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ABSTRACT

This report presents the results of a feasibility study of a small, lifting re-entry ve-
hicle test-bed capable of being launched by a Scout launch vehicle and capable of being
recovered. The purpose of the study was to determine if it was possible to conduct
meaningful, sub-scale, thermostructural experiments involving panels of interest of
representative full scale, manned, lifting re-entry vehicles, The study was based upon
the HL-10 vehicle concept.
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1. INTRODUCTION

This section of the report summarizes the system design effort performed
during the SLAMAST study,

It includes a general description, aerodynamic, flight dynamics, thermo-
dynamic, instrumentation, communication and recovery studies as well as subsystem
specifications and preliminary hardware definition of the following subsystems:

(1) Attitude Measurement and Control
(2) Instrumentation and Communication
(3) Recovery

(4) TElectrical Power and Distribution
(5) Separation

(6) Structural Design and Packaging

In addition, an Integrated Ground Test Plan and general descriptions of the
mechanical and electrical Aerospace Ground Equipment (AGE) are presented along
with a program description and detailed schedules (Figures 1-1 through 1-4),

The proposed system is the result of several iterations, As originally
conceived, it was thought the re-entry velocities of 25K fps (8.22K mps) or greater
would be required to obtain environmental similitude with HL-10, This belief
necessitated the use of a 4 stage Scout system and required a spacecraft length of

approximately 48 inches (1,46 meters), the maximum which could be accommodated
within the Scout shroud,

Subsequent progress in the trajectory analysis resulted in an established
requirement for re-entry velocities of 20K fps (6.58K mps) or less, This allowed the
use of a 3 stage Scout booster and relaxed the geometric constraints so that it was not
necessary to use a 48-inch (1,46-meter) spacecraft, This, in turn, permitted a
design consideration of spacecraft length as a function of approximate historical
packaging efficiency using non "tailor-made" components,

Although this was not a design optimization effort, the "test-bed" philosophy
dictated a preliminary consideration of the costs involved and a reasonable effort to
keep these costs compatible with the technical program objectives, Final selection of

the "feasible" subsystems for design purposes was, therefore, predicated upon economic
viability as well as technical feasibility,

The "test-bed'" philosophy also resulted in consideration of the inherent

versatility of the as-designed configuration and of alternate component or subsystem
selections which could increase specific spacecraft capahilities

——aT T

Fundamentally, the selected design presented in this portion of the report
represents a feasible hardware implementation of the requirements developed in the
Systems Specification (ERS 0010-02-0027-1), dated 27 March 1967. It is a design solution.
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TASK NAME

MONTHS FROM GO-AHEAD

123456789101112131415161718

19

20

21

22

23

24

TLM tracking & command (I&C)
S/S plan
S/8S specifications
Order development hardware
Component development
S/8 development tests
Component specifications
Order qual hardware
Component qual tests

©
<4—4E

4@

A®

<40
A®
s
R
<@
4@

Attitude measurement & control (AMC)
S/S plan
8/8 specifications
Order development hardware
C t devel "

P P

8/8 development tests
Component specifications
Order qual hardware
Component qual tests

q <0
)
—~@

Recovery

$/S plan

S/S specification
Subcontract effort

8/8 development tests
Component specifications
Order qual hardware
Component qual tests

—a0
4
a0
L)
q 4@
A D)
—D)

Separation

S/S plan

8/8 specifications

Order development hardware
Component development

$/8 development tests
Component specifications
Order qual hardware
Component qual tests

<©
<@
9@

Electrical power & distribution (EP&D)

$/S plan

S/8 specifications

System schematic

Component specifications
Elect. system development test
Harness design

Order qual hardware
Component qual tests

-a
~

440

ﬂs—

A start
V Complete

®
V "Stage Release

Figure 1-3, -~ Subsystem Development Schedule




1968

3rd QTR. 4th QTR 1st QTR

PROGRAM START | 27{28|29|30(3113233|34|35|36|37(38|39|40|41 |42 43‘44 45 46]47 48[49|50|51|52{1 |2 |3 {4 {5 |6 |7 {8 |9 {10j11

Technology testing
Aerodynamics
Basic body & control press. distrib.

Supersonic stab. & control (including
drag brake)

Mach 10 stab. & control characteristics

Mach 20 stab. & control characteristics

Thermodynamics
Heat transfer distribution

Nose cap flight proofing

Subsystem development testing
Hardware procurement commences A
AM&C electrical breadboard
AM&C penumatlcs breadboard
1&C breadboard
Ballute static deployment (vendor)
Drogue ejection (vendor)

Low altitude drops d
Drop electrical systems test u

High altitude drops

System dev. tests -~ dummy components
Antenna patterns
Thermal cycling
Static load
Vibration
Shock
Mass properties
Separation

Mech. AGE compatibility

System dev. tests - functional components
Electrical system dev. test
Elec. system temperature profile
Electrical AGE compatibility
System mission profile
Shroud deployment (LTV)

Prototype & flight certification tests
Qual S/C assembly complete
System acceptance testing (qual vehicle)
Elect. systems tests (incl. align. pneumatics)
Mission profile
Flight assurances environments
Vibration
Shock
Temperature/altitude

Mass propertics

Flight certification testing (qual testing)
EMI
Environments
Vibration
Shock
Temperature/altitude
Humidity
Acceleration (at NASA)

Flight Vehicle
$/C assembly complete
System acceptance testing
S/C balance
Flight




1969 1970

2nd QTR 3rd QTR 4th QTR ) 2nd QTR

191202122 23|24 |25 | 26|27 |28 (29|30 | 31 32| 33| 34|35 |36 |37 |38| 39| 40{41[42[43 |44[45|46{47{48|49}50(51{52{1 {2 {3 |4 5 {6 |7 8 |9 10/11112}13{14]15/16] 17{18|19(|20 |21 |22 23{24]25]26

Vy #

v

Figure 1=4, - Integrated Test Schedule




2. SUMMARY



PRECEDING PAGE BLANK NOT FILMED.

2, SUMMARY

2,1 GENERAL

The requirements to which the SLAMAST spacecraft has been designed are
given in the SLAMAST System Specification ERS 0010-02-0027-1, dated 27 March
1967,

. The SLAMAST spacecraft design chosen for feasibility demonstration is a
modified elliptic-cone vehicle with a length of 63 inches (2. 07 meters) and a weight of
305 pounds (138. 2 kilograms). The ellipse major axis is 28.04 inches (0. 805 meter)
and the minor axis is 16.04 inches (0. 788 meter). -

It incorporates two flaps; the top (or pitch) flap is servomotor powered for
variable angle control, whereas the bhottom (or drag) flap is driven by a pneumatic one-
shot device to a constant angle, These flaps are faired into flat areas on the space-
craft, This reduces the flap pivotal point design and thermal insulation problems with-
out significantly affecting the aerodynamic performance of the craft, The vehicle has
a nominal W/Cp§ of 250 Ibs/ft? (1232,5Kg/m?) with a maximum lift-to-drag ratio of

2,4 at 8 degrees angle-of-attack,

The selected structure is aluminum and is comprised of two integrally
machined keel members which are stiffened by a series of webs and formers, This
configuration provides integral hard points for separation and recovery subsystem
attachments and is compatible with a removable access and test panel concept,

A mechanically attached graphitic nose tip and an ESM (GE-Silicone) heat
shield are provided for thermal protection,

Figures 2-1 and 2-2 show the general configuration discussed above,

The instrumentation and communication subsystem consists of a C-band
tracking and ground command link, an S-band PCM continuous data transmittal link
(utilizing a "'micro-miniaturized" multicoder) and record and playback capability, It
includes those diagnostic and performance sensors necessary to gather the data defined
in the measurements list,

The recovery subsystem is a subsonic subsystem and consists of a FIST
ribbon decel parachute, a ballute, and an rf beacon location aid, The ballute is ram-
air inflated and provides inherent spacecraft flotation capability, (The drag flap
mentioned above may be considered a part of the retardation sequence prior to para-

chute deployment,) This system has been sized to provide a spacecraft water impact
velocity of 100 fps (32. 9 mps). '

The separation subsystem consists of four collet assemblies, an in-flight
disconnect (IFD), and auxiliary hardware., The collets are "finger and piston" devices
which mechanically attach the spacecraft to the spacer. They are pneumatically operated
and, upon command, gas pressure pushes the pistons forward, This reieases the
mechanical attachment and, by continued piston travel, imparts a separation velocity
to the spacecraft,
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The electrical power and distribution subsystem consists primarily of
harnesses, a power switching module, a battery, an in-flight disconnect (SC to spacer)
and a spacer-to-shroud-access-door umbilical for ground power accommodation,

The selected attitude measurement and control subsystem derives its
reference orientation from a Whittaker PRYS platform. It utilizes a programmed
sequence for mission accomplishment., Exospheric, 3-axis reaction control and
attitude orientation after separation is provided by a Freon-14 gas expulsion system.
Upon re-~entry, the pitch control (only) is relinquished to the top flap. Roll and yaw
control are maintained through the Freon-14 system. The design trajectories were
characterized by a constant altitude trajectory from pull-out to drag brake initiation
and this is obtained by modulation of the pitch flap angle roll nulling and yaw rate
limiting during flight in the atmosphere. At the end of the experiment, the drag and
pitch tlaps are used in conjunction with each other to begin the ballistic mission
termination,

The experimental specimens consist of two panels; one on the top (leeward)
surface and another larger one on the bottom (windward) surface, The reference
design for these panels duplicates (8o far as is possible) the typical HL-10 design,

A cylindrical spacer is proposed, This spacer provides the spacecraft to
booster mating interface, It is designed so that the spacecraft to spacer mechanical
attachment takes advantage of the inherent hard-points in the spacecraft, The spacer
assembly also includes the mounting arm of the umbilical for ground power access and
the separation subsystem hardware (previously described),

2,2 CAPABILITY

As shown, the SLAMAST spacecraft will endure boost loads and will
separate from the third stage of Scout at a timed interval from booster engine cut-
off, It will orient itself at a predetermined pitch angle-of-attack (up to a maximum of
16 degrees) and will stabilize itself in null roll and yaw within a + 5 degree dead band.

It will re-enter and pull out of its initial ballistic path (by using aero-
dynamic force), and will establish the time reference for recovery flap deployment
and tape recorder playback based on the pull-out maneuver. (This compensates for
booster burn-out altitude variations with resulting effects on separation time and
its consequent perturbation of range.)

The angle-of-attack is modulated through the programmed pitch flap control
to fly the predetermined trajectory.

After the timed glide portion of flight, the spacecraft will begin its mission
termination by deploying both flaps. After a set time from this event, the recovery
sequence proper begins with the deployment of the FIST type ribbon parachute,

The spacecraft will survive water impact at 100 fps (32,9 mps) and will
subsequently float for 72 hours minimum, The RF beacon location aid will operate
for a minimum of 10 hours.
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During boost, re~-entry and glide, all information is gathered from the
included sensors and transmitted continuously over an S-band PCM system, During
re-entry and glide, this information is also recorded, During mission termination
(both flaps deployed), the continuous data transmittal and recorded data playback
occurs simultaneously, The Electrical and Mechanical AGE required to handle,
test, ship and check-out the spacecraft has also been included,

2.3 FLEXIBILITY

2.3.1 BOOST AND RE-ENTRY

The boost phase design loads arose from the 3 stage Scout environments
as reflected in the Systems Specification; and, the proposed design will meet these
requirements. The design bounds on re-entry path angle were from "k = -1 degree
toy E= -10 degrees. The craft is capable of re-entering with any Yp between these
bounds. It is also flexible enough to re-enter at either steeper or shallower path
angles. The factors which would have to be assessed against a specific yg outside

the -1 degree to -10 degree bounds are; heat shield and reaction control impulse
requirements,

2.3,2 PULL-OUT

The pull-out altitudes specified from a feasibility demonstration point of
view are predicated on a pitch flap initial deployment angle of 40 degrees and are
dependent primarily upon ¥_ (i.e. ¥_ = -1 degree causes a pull-out at approximately
145K feet and ¥_, = -10 degrees causes a pull-out at approximately 115K feet). This
altitude could aPso be varied by changing the initial pitch flap deployment angle(d_=
40 degrees for higher pull-out, 5F=40 degrees for lower pull-out), The factors
which would have to be assessed against specific 0_ not equal to 40 degrees are: heat
shield, structural strength, and spacecraft stability.

2,3.3 GLIDE

The pitch flap program chosen for feasibility demonstration provides for
constant altitude flight through modulation of the angle-of-attack. This program could
be modified to provide for angle-of-attack/altitude composite variations, etc, The
factors which would need to be assessed against a specific glide path control scheme
are: pitch flap actuator capability, available electrical power, programmer modifica-
tions, heat shield requirements, and spacecraft stability.

The roll control implementation scheme chosen for feasibility demonstra-
tian provides for roll nulling within a deadband of + 5 degrees (from separation through
to parachute deployment), This could be varied by establishing a desired roll history
program, For example the craft could be banked approximately 90 degrees, kept in
that attitude for a specific time, then reverse-banked through 180 degrees and finally
returned to null for recovery initiation, The primary factors influenced by implement-
ing something other than roll nulling are programmer changes, and total impulse and
thrust level changes. (A significant increase in available impulse and thrust level
could be provided by using a hoi-gas system, This system aiso requires significantiy
less volume for a given impulse than the Freon-14 system,)

13
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The level flight duration chosen for design feasibility is approximately 500
seconds., This can be varied by a simple timing change. The factors which would need
to be assessed against a specific glide duration are heat shield (thermal insulation)
requirements, retardation effectiveness for recovery, and reaction control impulse
requirements.

2.3.4 RECOVERY

All design trajectories employed the drag flap as a retardation device and
showed subsonic, low dynamic pressure conditions at parachute deployment. If less,
high-altitude retardation was desired for higher ballistic termination velocities, the
subsonic recovery system could be elevated to a Mach 1,5 capability by changing to a
hemisflo parachute with small weight and volume penalties.

2,3.5 CONTROL SYSTEM

The attitude reference system chosen for design feasibility is a modified
MARS platform (termed PRYS by Whittaker Corp.). The mission accuracy predicated
on the errors derived from this platform (and ancillary hardware) is presented in
(Section 4, 1) of this volume. Other reference systems are available which could, at
some increase in expense, increase the total mission accuracy.

2,4 REDUNDANCY

2.4.1 DATA TRANSMITTAL

The design provides for both continuous real time S-band data transmittal
and data recording and playback without interruption of the real time capability. This
assures data gathering even if factors such as plasma attenuation or ground receiver
availability prevents continuous reception of telemetered data.,

The playback mode will be initiated by either of two events:

(1) Primary, the passage of a specified time from pull-out.

(2) Back-up, the receipt of a ground command through on-board C-band
via the FPS-16 radar.
2,4,.2 MISSION TERMINATION

The deployment of the drag/pitch flaps for mission termination initiation
will be effected through either of two events:
(1) Primary, the passage of a specified time from pull-out.

(2) Back-up, the receipt of a ground command through the on-board C-band
command receiver/transponder via the FPS-16 radar.

o W5 oo ol me HE Ep N E @ @ & o Gk 5 I G = -



2,4.3 STRUCTURE

The experiment panels are mounted so that they form the '"1id" of a
structural pan, The pan itself is an integral part of the spacecraft structure and has

its own heat shield and structural integrity, A failure of the panel should not result
in spacecraft failure,

2,4,4 DESTRUCT

Although no design implementation of a destruct system was pursued, the
wealth of reference sensors and performance data measurements assure the avail-
ability of existing on-board equipment which can be used to signal the need for destruc-
tion and to provide initiating action to the chosen devices, The sensing of this need
would be derived from totally redundant parameters,

2,4,5 PYROTECHNIC INITIATION DEVICES

All pyrotechnic devices will be provided with redundant and isolated
circuits,

15
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Figure 2-2. - SLAMAST Structural Arrangement
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3. SYSTEM REQUIREMENTS

3.1 DEVELOPMENT OF GENERAL REQUIREMENTS

3.1.1 LAUNCH VEHICLE

The primary considerations in the choice of a launch vehicle or booster
for a re-entry mission, such as the SLAMAST Program entails are:

(1) Re-entry vehicle velocity, flight path angle, and altitude of separation
meet the criteria of re-entry vehicle experiment input conditions,

(2) The booster vehicle employed should provide an inexpensive method
of duplicating the re-entry dynamics of full scale vehicle flights,

(3) Maximum use should be made of proven hardware and techniques while
maintaining flexibility for providing a broad spectrum of performance capability.

The design feasibility study was undertaken on the basis of using the Scout
booster, with the environmental simulation requirements determining the use of a
three-or four-stage configuration, The choice of the Scout booster essentially fulfills
the last two of three considerations listed above. The first and foremost experiment
item will be enumerated in more detail in the following paragr aphs,

The S/C design was initiated using a 48 inch length, 170 pound vehicle on
a four-stage Scout. Re-entry design conditions were defined as follows:

(1) Path angles, (ye) varying from 1 to 15 degrees down from the local
horizontal,

(2) Velocity (Ve ) of 25, 000 feet per second.
(3) Altitude (h_) of 400,000 feet.

The Scout four-stage payload versus velocity performance curves shown
in Figure 3.1-1 indicate a payload weight capability of 350 pounds or greater at a re-
entry velocity of 25, 000 feet per second at fourth stage burnout altitude of 400, 000
feet for the flight path angle range under consideration (ref, 3. 1-1), As the feasibility
study progressed, it was established from a flight test environment and test panel con-
figuration standpoint by the Thermodynamics and Structures groups *hat a re-entry
velocity of 25, 000 feet per second (ref. 3.1-2) is not required. Cor sequently the de-
sign re-entry conditions were changed to the following:

(1) Path angles ('ye ) varying from 1 to 10 degrees down from the local
horizontal,

19
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(2) Velocity ( Ve ) of 20,000 feet per second.

(3) Altitude (he ) of 400, 000 feet,

The change in re-entry velocity permitted the use of a three-stage Scout
booster configuration based on the payload versus velocity performance curves shown
in Figure 3.1-1b, resulting from data obtained from the re-entry F Program, These
indicate a payload weight capability of 600 pounds at a re-entry velocity of 20, 000 feet
per second for a -15 degree flight path angle at a third stage burnout altitude of 400, 000
feet. Extrapolating the flight path angle to the SLAMAST range of -1 to -10 degree

path angles provides sufficient weight margin to account for unknown boost trajectory
parameters and variables,

The use of the three-stage Scout launch vehicle immediately provides two
benefits to the SLAMAST vehicle; one, it permits the vehicle length to increase to 63
inches; and two, it removes the requirement for the despin of the S/C after separation.
Item one provides more test panel flexibility and subsystem growth capability in addi-
tion to eliminating packaging problems encountered in the 48 inch vehicle, while item

two reduces the impulse requirements of the altitude control gas system. Conversely,

the use of a three-stage Scout requires the design of an interface adapter - separation
system,

The expected SLAMAST Scout launch configuration is shown in Figure 3, 1-2,
A spacer separation unit is utilized as an interface adapter to attach the S/C to the
third or upper stage of the Scout booster. A flight shroud is used during ascent. The

8/C will be released after completion of the launch phase upon signal from the Scout
third stage.

The SLAMAST S/C will be compatible with the payload launch designparam-
eters and environment factors specified in the Scout Users Manual, including items
such as payload separation, dynamic stabilization, payload thermal environment, and
mechanical environments of acceleration and vibration, The preliminary S/C design
and flight requirements are presently covered by two GE documents, the SLAMAST
System Specification (Stage 1) identified as Specification ERS0010-02-0027-1 and the
SLAMAST Systems Requirements Analysis identified as document 67SD613. Both are
included as part of the SLAMAST Final Report data package and should be referred to
for preliminary detailed information, The Systems Requirement Analysis contains the
flight sequence of events,

3.1.2 DESIGN TRAJECTORIES

The total flight trajectory for a re-entry mission flight consists of the boost
trajectory segment from lift-off until separation and a re-entry trajectory segment
from separation until termination of the flight. Primary emphasis during the feasibility
study has been on the re-entry trajectories since the level-of-effort available did not
permit boost trajectory simulation. '"Best available information' estimates were made
for the boost trajectories, sufficient for the definitive purposes of this study, Detailed
analysis in later phases of the SLAMAST Program would result in modifications that
would incorporate delta changes to the assumed boost trajectory parameters,
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A pictorial representation of the SLAMAST flight mission profile is shown
in Figure 3. 1-3 for a -1 degree re-entry path angle, The pictorial representation sub-
divides the re-entry trajectory into three phases. Re-entry design trajectories have
been generated for the bounding re-entry path angles (-1 and -10 degrees) and vehicle
w/ CLS covering the presently defined 63 inch S/C.

The powered flight phase for the three-stage Scout consists of the booster
firing the first two stages sequentially, coasting beyond peak altitude and then firing
the third stage to drive the payload back into the atmosphere, Re-entry capabilities
can vary widely depending on the selection of pitch rates, staging times, and final
stage attitude at ignition, Major considerations involving the launch phase include
booster dispersions at time of separation (up- or down-range, cross-range, altitude),
separation tip-off errors, and exact location of separation point, Nominal separation
errors assuming ballistic re-entry parameters are magnified greatly in L. > D flights
where flight times are of a much longer duration,

A revision of the reference time for the S/C deployment and recovery
events has resulted from a + 6 n. mi. tolerance in Scout burn-out (and separation) altitude
input received from NASA, A second reference time (in addition to the one at separa- .
tion) will be established during the pull-out maneuver based upon the change in sign of Ax'

It would be desirable from a radar tracking and data monitoring standpoint
for the S/Clocationat re-entry to be short, but within the look angle of the ground-
based equipment at Bermuda for a Wallops Island launch. This would provide maximum
time coverage of the separation re-entry pull-out sequence referenced to a precise
location and maximum communications network coverage point, Every effort should
be made to tailor the powered flight trajectory to fit this criteria, without overriding
the experiment input re-entry conditions.

The re-entrydesigntrajectories (from 400,000 feet) consist of exospheric flight,
pull-out, constant altitude flight, deceleration, and terminal descent, Current experi-
ment time is 700 seconds, defined as the time from re-entry at 400, 000 feet until the
deceleration phase is initiated. The resulting heat flux history appears to meet the
criteria for a good experiment., The re-entry maneuvers are defined as follows:

(1) Pull-out, - A constant angle of attack providing the specified ballistic
coefficient (approximately 250) is maintained from re-entry (400, 000 feet) until a pull-
out to horizontal flight is achieved,

(2) Horizontal Flight. - The angle of attack is modulated in the pitch plane
to provide the lift necessary for horizontal flight. The angle of attack increases as the
dynamic pressure decreases until the angle of attack for the specific W/ CLS is attained,

(3) Recovery Terminal Glide, - With the dragbrake deployed, the angle of
attack is reduced to zero (zero lift), and the vehicle glides to the subsonic velocity
point where the ballute terminal recovery system is deployed.
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Time histories of velocity, altitude, stagnation, heat rate, dynamic pres-
sure, angle of attack, axial and normal acceleration, and range, as well as altitude
versus range have been generated for the two bounding design cases (re-entry at
20, 000 feet per second with path angles of -1 and -10 degrees), These are discussed
in more detail in Section 3. 3. It is interesting to note that at the present lower design

re-entry velocity the environment (heat flux) sensitivity to re-entry path angle varia-
tions is nearly eliminated,

On the basis of the latest design trajectories incorporating the drag brake
deceleration system, it appears a single stage subsonic recovery subsystem will meet
recovery requirements, This means the use of a single stage ballute is preferred
rather than a two-stage deceleration chute and paraloon combination,

3.1.3 COMMUNICATION

The following criteria have been identified in the selection of an informa-
tion retrieval system which will effectively fulfill the SLAMAST flight objectives:

(1) The system shall provide adequate accuracy and time response reso-
lution to permit reliable quantitative delineation of the thermostructural phenomena of

- gy 4
interest.

(2) The system shall provide sufficient diagnostic information to adequately

interpret the control system functions during the vehicle development phase of opera-
tional testing,

(3) The system shall require a minimum surface support force.

(4) The system shall, if possible, be compatible with both the Eastern
Test Range and the Apollo Ship data acquisition equipments,

(5) The system shall be configured to provide in-flight data acquisition to
minimize the probability of data loss.

The on-board communications subsystem resulting from the feasibility
study will transmit in real time from separation until ballute deployment. Plasma
attenuation investigations indicate blackout of real time data during pullout and a part
of level flight during the 700 second experiment interval, A playback recorder will be
utilized to record experiment interval data with two modes of playback initiation;
through a ground command during the last 100 seconds of the experiment interval or
automatically at the initiation of the deceleration phase, The communication subsystem
configuration as a result of this study is as follows:

(1) PCM/FM Telemetry with digital on-board data handling (eight bit
sample encoding),

(2) Nondestructive data playback (data remains on tape) from the on-board
recorder with no provision for simultaneous record and playback.
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(3) Capability for ground command initiated recorder (digital) playback,

(4) Programmed playback of the on-board recorder during the retardation
sequence as backup.

(5) Continuous real-time telemetry at a power level of two watts except
during recorder playback. During playback, the recorder and real-time information
shall be mixed and transmitted at a two watt level.

(6) Incorporation of a C-band transponder and command receiver.

The communication subsystem is discussed thoroughly in Sections 3.5 and
4, 2, including the results of studies and trade-offs in arriving at a recommended con-
figuration and the multiplicity of ways S/C data can be retrieved.

3.1.4 RECOVERY

Requirements for the recovery of a vehicle with L/D >1 are dependent upon
the recovery zone footprint for the planned flight path and selected trajectory control
scheme, Feasible recovery is based upon the recovery force providing adequate cover-
age of the recovery zone within allowable time constraints. For a limited-size recovery
force the footprint size should be held to a minimum value, In an operational vehicle,
maximum footprint size is desirable, while in a flying test-bed design such as SLAMAST
the opposite holds true.

The SLAMAST range is controlled through the use of trajectory termination
utilizing deceleration flaps. The sizing and location of the bounding trajectory recovery
zones, recovery force configuration and deployment are discussed in more detail in
Sections 3. 3 and 3. 6.

3.1.5 RANGE SAFETY

Range safety requirements are developed by determining criteria (generally
through graphical means) denoting the extent of any range safety problem and comparing
bounding trajectory worst-case malfunction footprints with the range safety limits, If
the safety limits are exceeded in any case, a flight termination system must be em-
ployed by the S/C.

SLAMAST limits are established in Section 3.7 for vehicle malfunctions
occurring at the time of S/C re-entry (400, 000 feet) and at 350 seconds after re-entry.
The conditions under which range safety constraints are exceeded are shown, and a
brief discussion of a possible flight termination system is presented.
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3.2 AERODYNAMIC STUDIES

3.2.1 AERODYNAMIC DEFINITIONS AND NOMENCLATURE

The aerodynamic conventions, nomenclature, acronyms, symbols, and
numerical values of representative constants are presented here to establish a
clearer basis for understanding aerodynamic performance data and other material.
By way of introduction to this material, lifting vehicular systems, represented by the
SLAMAST geometry of Figure 3. 2-1, employ NASA standard terminology and defini-
tions; these generally differ from those used for axisymmetric ballistic vehicles,
Consequently, a relatively comprehensive summary of terminology and definitions
was prepared and is presented here both as an aid and as a consistent basis for under-
standing aerodynamic data presentations. The reader is referred to standard aero-

dynamic texts for more detailed definitions, explanations, and expositions than are
presented here.

Figure 3. 2-1. - SLAMAST Body Axes Coordinate System Representation




List of most common symbols

Axes system

The basic body axes are a set of orthogonal axes fixed with respect to the vehicle
and to each other but at varying angles to the free-stream velocity vector. These
axes are defined as follows and as shown in Figure 3. 2-1:

X

XYy,z

Longitudinal axis of the vehicle, an arbitrary line in the vertical plane of
symmetry, generally a center-line.

Vehicle axis normal to the longitudinal axis and to the vertical plane of
symmetry, originating at the moment reference center (or center-of-gravity),

Body axis mutually perpendicular to both X and Y axes, originating at the
moment reference center, lying in the vertical plane of symmetry,

Distances in percent Igpp, measured along the X-axis aft from the nose
reference plane, and measured along the Y-axis right and Z-axis up from
the common origin of the axes system, respectively.

Attitude angles

o

Pitch angle. - (the pitch component of angle-of-attack) - that angle between
the vehicle's longitudinal axis and the component of the free-stream velocity
vector lying in the X - Z plane, positive for rotation above the velocity
vector, degrees.

Sideslip angle, - that angle between the free-stream velocity vector and its normal

projection onto the body's X-Z plane degrees; negative as shown in Figure 3.2-1.

(Yaw angle, ¥, is minus B, the side slip angle).

Roll angle. - that angle of rotation of the X - Y plane from the local horizontal
plane, measured in the Y - Z plane, positive for clockwise rotation as viewed
from the rear, degrees.

Flight path angle. - that angle between the free-stream velocity vector and
its normal projection onto the local horizontal plane, positive when measured
nose up, degrees. (The inertial flight path angle, % » is referenced to a
space-fixed reference plane, such as a launch pad for an earth-oriented
system. The symbol is also used for the ratio of specific heats, as defined
later. )

Pitch attitude angle. - that angle between the vehicle's longitudinal axis and
its normal projection on the loeal horizontal plane, nositive for nose ahave
the local horizontal plane, degrees.
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Forces

The positive direction of body-induced forces is away from the common origin of
the axes and along the solid axes shown in Figure 3. 2-1.

N

Normal force. - that force directed parallel to the Z axis, upward, and act-
ing through the center-of-pressure, 1bf. or kgf,

= = o + in o
N CNqS. CN CL cos CD sin

Axial force., - that force directed parallel to the X axis, aft, and acting
through the center-of-pressure, 1bf. or kgf.

= = o - in o
A CAqS. CA CDcos CLsm

Side force. - that force directed parallel to the Y axis, right, and acting
through the center-of-pressure, 1bf. or kgf.
Y= CYqS.

Lift force. -thatforce normal to the component of the free-stream velocity vector,

in the X-Zplane, upward, and actingat the vehicle's center-of-pressure, 1bf. or kgf.

L= CLqS.
= o - in o
CL CNcos CAsm

Drag force. -thatforce parallel to the component of the free-stream velocity vector,
in the X-Zplane, aft, and actingat the vehicle's center-of-pressure, 1bf. or kgf.
D= CDqS,

= o+ in &
CD C Acos CNsm

Moments and their reference locations

m

Pitching moment. - that moment about the Y axis, positive for clockwise
rotation when viewed from the left vehicle side, ft. - 1bf, or m - kgf.
m=C Blppr

Yawing moment. - that moment about the Z axis, positive for clockwise
rotation when viewed from the vehicle top, ft. - 1bf. or m - kgf.
n= quSI

REF

Rolling moment. - that moment about the X axis, positive for clockwise
rotation when viewed from the rear, ft. - Ibf, or m - kgf.

L= C Shgp




X

Center of pressure location (at which resultant vehicle forces act) in

'body lengths from a reference plane, (see x  definition) perpendicular
to the X-~axis. °g

Location of vehicle center of gravity in body lengths from a reference
plane perpendicular to the X-axis. (The SLAMAST reference plane
is located exactly at the nose origin; xcg = 0.569.)

Other symbols (See references 3. 2-1 through 3. 2-3 for numerical values)

a

Q

1bf

1bm

Speed of acoustic pressure propagation, fps or mps. (Also local cross-section
depth)

= \/‘Y gRT

_ - P Yo e q ~ PL_ Pm 2 PL q\
Pressure coefficient, dimensionless. C - = 5 - /

Local value of the gravitational acceleration, ft/ sec2 or m/ sec2
Pounds force
Pounds mass, or slugs (Ibm = 1bf/g)

A4

Mach number, dimensionless, =3

Static pressure, psf or kgsm
2 2
Dynamic pressure, psf or kgsm. q=pV /2=YPM /2

' . . -
Reynolds' number, dimensionless, R=pV IREF/ [

Velocity magnitude, fps or mps

Missile body axis load factor; (positive in the negative direction of the
respective body axis), in fractions of local gravitational acceleration.

3
Mass density of air, 1bm. / ft3 or kgm/ft

Ratio of specific heats (c /¢, ) (about 1, 401 for air); used also for flight
path angle,
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R

Coefficient of kinematic viscosity, lbm/ft-sec

Temperature degrees Fahrenhelt ( F), Cels1us( C), Rankme( R), or
Kelvin ("K); “K = 273,16 + °C; °R = 461. 67 + °F (ref. 3,2-3)

Gas constant (see Dimensions for values)

Subscripts

=

= O

o)

Free-stream conditions

Sea level, standard day values

Flap (See Control Nomenclature for details)
Inboard, inviscid, inertial

Local, left

Outboard

Right

Condition of zero pitch angle, or before perturbation

P, 9, and r Roll, Pitch and Yaw, respectively

Superscripts

*

40

At the condition for maximum lift-to-drag ratio

4
Forty degrees deflection (as in 0 O); similarly for other deflection angles.

Derivatives

C

m
63

The pitching moment derivative with respect to pitch angle; a plus value
represents static pitch instability, Cp,,  is usually taken as the slope of
the C,, versus & curve atparticular «&'s, and is a direct measure
(not a definition) of static longitudinal stability. (The static longitudinal
stability is defined as 3 C,,/dCy, and can usually be approximated by

d Cm/ acN ~ BCm/ 5CL in the useful pitch angle range, per degree.)

3C
m

C =
ma 9 «

The yawing moment derivative with respect to side slip angle; a plus value
represents static yaw stability, per degree.
3C
n




The rolling moment derivative with respect to side slip angle; a plus
value represents static roll instability, per degree.

3¢

Normal force-curve and lift~curve slope is typically measured at
zero pitch angle (« o) and at the pitch angle for maximum lift~-drag
ratio (a*), per degree.

Q
I
Rl
Q
1l
(e%) (o7}
Ql Q
=

Induced drag factor - not strictly a derivative, but useful in pitch
performance analysis. K is the averaged incremental drag increase
divided by the square of the incremental lift increase, and is often
presented in a somewhat modified form such as K' = AC A/ o2

2

L)

K = (CD—CDO)/(CL—C )

Control Nomenclature

The flap axes system is a set of flap-fixed orthogonal axes free to rotate with

flap deflection.

Xp

Flap axis centered in the flap plane of symmetry and perpendicular
to the hinge line at body-hinge line juncture.

Flap axis along the flap hinge line.

Flap axis mutually perpendicular to XF and YF at their juncture.

Flap deflection angle; angle between the X - Y plane and the XF - YF
plane in degrees. (Positive when in a direction to produce positive pitch

force; hence, trailing edge upward deflection is negative deflection.)

Flap force components in the Xp, Yy, and Zy directions, positive
upward, right, and aft, respectively.
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Cm
6F

Dimensions
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Flap force components in the z and x directions of the Z and X -~ axes,
positive up and aft, respectively.

Flap hinge moment; moment about the Y axis (a positive hinge
moment is clockwise when viewed from the left side, ft-lbf or m-kgf.
Cy, = Flap hinge moment coefficient, hm = Chg SF LF

Moment increments due to flaps, including flap interference contribu-
tions about the Y, Z, and X - axes, same positive sense as pitching,
yawing, and rolling moments, respectively.

m_=C qS1

.4 =Ct
p=Co C qS1 F=C

REF' "F ~ “n REF’

qsS1
F F F REF

Reference flap chord length, ft, or m.

Reference flap moment arm, C.P. _ to xcg’ in Body Lengths

F
Reference flap area, sqft or sqm

Flap center of pressure location, usually in Body Lengths from the
flap hinge line

Tail Volume, a measure of the relative control effectiveness;

V = (ITF/ gy G5

Flap moment derivative, BCmF/ 38 F (other flap derivatives for
force and moment are similarly defined)

Vehicle reference length, ft or m (used along with S to reduce aero-
dynamic moments to non-dimensional form).

Vehicle total projected planform area, sq ft or sq m (used to reduce
aerodynamic forces and moments to non-dimensional form).

Vehicle span, ft or m

Vehicle local width, ft or m
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3.2.2 CONFIGURATION AERODYNAMICS

3.2.2.1 Baseline SLAMAST shape. - Presented here is the aerodynamically defined
external geometry of the basic GE/RSD SLAMAST flying test-bed shape. This shape
was employed in the current SLAMAST study effort, but has been somewhat modified
by the addition of a dive brake as subsequently discussed. All dimensional data are
normalized with respect to vehicle length.

Detailed information on the exact manner in which the elliptical cross-
sections vary with length is presented along with the variation of peripheral surface
slope and meridian angle, in a non-dimensional form valid for any vehicle length.

The aerodynamically-tailored shape shown in Figure 3. 2-2 was originally
delined by a cureiul bualance oI aerodynamic Iorce, moment, stability, control eitective-
ness, and geometric factors, This same shape was used as the basis of model design
and construction for the nominal 2/7 scale SLAMAST wind tunnel model.

Aerodynamic force and moment changes resulting from variation from the
shape of Figure 3. 2-2 require separate and detailed analysis. This is particularly
true with respect to any and all variations in or near the upper-aft mounted control
surface,

The dimensional data presented in Figure 3. 2-2 is normalized with respect
to length. Any dimension shown, when multiplied by vehicle length, will be correct
for that vehicle. For example, dimensional data for a 50-in. version may be obtained
by multiplying the presented values by 50, the angles and center-of-gravity position
of Figure 3, 2-2 remaining unchanged.

Figure 3. 2-3 presents the variation of span (b), height (a), and ellipticity,
(b/a), with fractional vehicle length. The analytical relationships that apply for the
wrapped surface portion from the nose cap station to the vehicle base are also shown
on the figure. Those relationships were simply derived from the 0.073958 and 0. 222500
semi-span and 0. 029271 and 0. 127292 semi-height fractional length values for the nose
cap (X/L = 0.063125) and base (X/L = 1) stations, respectively.

Figure 3. 2-4 presents the variation of peripheral surface slope with meri-
dian angle for cross-sections at the nose cap, and at 0.1, 0.2, 0.4, 0.6, 0.8, and 1.0
fractional length locations. The data of this figure is of particular value to design and
to thermodynamic analysis. As examples, a constant peripheral slope could be a keel
or longeron location along which attaching clips and brackets would not vary their
angles with respect to a vertical or horizontal line, Consequently, one clip design
could be used along such a constant slope line, rather than varying with longitudinal
location, In the thermodynamic analysis of elliptic shapes, Lees has reported that the
heating rates follow peripheral slope and not meridian angle, as reported in reference
3.2 -4 and confirmed by the test information of reference 3.2-5. Thus, results for a
constant slope trace on an elliptic conoid represent a comparable slope trace on a
right circular cone and heating analyses may be simplified.
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3.2.2.2 SLAMAST plus drag brake. - The addition of a drag brake to the existing
SLAMAST vehicle was incorporated as a means of increasing aerodynamic drag to per-
mit ballistic flight following the environmental test period. The effects of such flight
path management on the vehicle system include:

(1) Lowered total flight time;

(2) Reduced total integrated heat pulse and possibly reduced backface
temperatures and heat shield weight;

(3) Reduction in down—rangé excursion;

(4) More precise control of recovery point;

(5) Increased pitch stability (both dragbrake and pitch flap rotated outward);
(6) Reduction in transonic pitch and yaw angles-of-attack transients;

(7) Use of a subsonic recovery system.

The dragbrake geometry was assumed identical to the existing SLAMAST
pitch flap and scallop. The '""SLAMAST plus drag brake" aerodynamic configur ation
thus exhibits symmetry about both the HRP (Horizontal Reference Plane) and the VPS
(Vertical Plane of Symmetry) compared to the baseline SLAMAST study shape which is
symmetrical only about the VPS, Normalized non-dimensional data for the SLAMAST
plus dive brake shape are presented in Figure 3, 2-5,

The side area change results in a lessened yaw stability, the amount of
which requires separate analysis. However, on the basis of wind tunnel tests run with
the scallop for the top flap the reduction in stability is not expected to be significant.

Aerodynamic drag, flap hinge moment, and flap effectiveness data are pre-
sented here for the current SLAMAST vehicle (with the dragbrake). The estimates are
for zero pitch angle-of-attack, at a reference center-of-gravity location of 56. 9 percent
vehicle length, and for Mach numbers to 20. The estimated error tolerances asso-
ciated with the data vary with flap deflection, flight altitude, and Mach number and can
be as high as 30 percent. Dimensional details are shown in Figure 3. 2-5.

The aerodynamic performance information required to assess the basic
flight path characteristics is presented, along with results of an initial recovery time-
history, and the consequent flap hinge moment (per flap) along that recovery flight
path. The preliminary aerodynamic performance data consists of assessment of the
changes in drag, in flap hinge moment, and in the change of vehicle pitching moment
about a 0.569 1y center-of-gravity location with respect to flap deflections measured
from the HRP. All the data are presented as functions of Mach number and flap de-
flection, based primarily on available test-derived flap incrementals for a shape some-
what similar to SLAMAST and for a five-degree cone plus flap configuration, More
complete flap aerodynamic load and hinge moment information may be found in
paragraph 3. 2, 4, 2.
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3.2.2.2.1 Aerodynamic drag: - Drag coefficient estimations are presented in
Figures 3. 2-6 and 3. 2-7 for the SLAMAST vehicle with a drag brake addition. The
estimations are all at zero pitch angle-of-attack. The drag estimation errors of
Figures 3. 2-6 and 3. 2-7 exist for the following reasons:

(1) Test data for the single-flap SLAMAST configuration exists only at
3. 95 and 4. 63 Mach number to a flap deflection of 46 degrees with respect to body
centerline,

(2) Test data at zero pitch angle-of-attack is sensitive to body cross-
sectional shape; an elliptical cross-section promoting more cross flow in the flap
vicinity.

(3) ‘Lhe nearest related shape for which test data exists has a flap
geometry which differs in

(a) trailing behind the body base,
(b) the presence of a stub delta wing blocking cross-flow, and,
(c) a forebody incorporating a canopy.

(4) The flap force sensitivity to local shock geometry, which geometry
changes rapidly below a Mach number of about four.

The consequent ranges of possible error in the presented drag estimates
are functions of Mach number, flap deflection, and flight altitude. For the purposes
of the SLAMAST feasibility study, the drag error range is estimated for Mach num-
bers from one to five and flight altitudes to 175K feet as zero to plus 10 percent for
zero flap deflection, minus 10 to plus 15 percent at 25° flap deflection, and plus to
minus 20 percent at deflections higher than 40°, The same ranges apply for other
Mach numbers if the flow is laminar,

The error ranges are necessarily approximate although a concerted effort
was made to resolve the enumerated and other configurational differences in the avail-
able test data.

3.2.2.2.2 Initial recovery time histories: - Shown in Figure 3. 2-7 are variations of
drag with flap deflection. Initial trajectory runs employed approximate flap deflec-
tions of 15, 30, and 40 degrees. A limited amount of the resulting time histories are
presented here as Figures 3. 2-8, 3.2-9 and 3. 2-10,

3.2,2,2,3 Flap effectiveness and hinge moment: - The variation of pitching moment
due to the flap with flap deflection, AC,,s , was determined for varying flap de-
flection at zero pitch angle and at Mach numbers of 3, 95, 4,63, and 10 to 20. The
obtained values were then faired by use of the drag progressions with Mach number to
form the flap effectiveness versus Mach number information presented along with the
other flap data of paragraph 3. 2, 3. 2,
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Figures 3. 2-8, 3.2-9 and 3., 2-10 show the flap effectiveness decreasing
with increasing Mach number most markedly at the lowest deflections and very little
at 40 degrees deflection. The rationale for the progression is related to the character
of the flap pressure distribution: as the Mach number increases, and as laminar
separation is assured, the pressure distribution changes such that the flap center-of-
pressure moves aft. A higher pitching moment results from this center-of-pressure
movement, created by a small increase in the flap force moment arm measured to
the center-of-gravity (but also creating a much larger change in flap hinge moment).

The physical explanation is that the bow shock wave intercepts the flap
surface at high flap deflections causing an abrupt pressure rise in the rearward flap
region. The hinge moment information, in fact, is based on a flap center-of-pressure
of 71. 3 percent flap length as determined from an integration of the flap pressure

aistributions oi kigure 3. 2-63 plotted versus flap semi-span. That plot is shown here
as Figure 3. 2-11.

The hinge moments resulting from the trajectory and flap effectiveness
data of the other figures of this section are presented in Figures 3, 2-12 and 3. 2-13
for the SLAMAST plus drag brake shape (63 inches E 6 mete%iength). For sizes
other than the 1. 6 meter version, hinge moments may be obtained by simply multi-
plying the hinge moment data by the scale ratio to the 63-inches length, Example:
a 126-inches long vehicle would have a hinge multiplying factor of two cubed or eight;
doubling length increases hinge moment eight times. This relationship arises from
the nature of flap effectiveness and its frequent correlation by means of a control
volume, If geometric similarity is maintained, moments vary as volume and thus as
the cube of any reference length. In summary,

(1) Aerodynamic performance estimates are presented in this section
for a SLAMAST shape variation embodying two flaps disposed so that the vehicle is
symmetrical about the HRP,

(2) The estimates include an error tolerance of as much as plus to minus
30 percent.

(3) The advantages of the shape change include more precise range
control, lessened thermodynamic severity, and better recovery system deployment.

(4) The disadvantages of the shape change include a reduction in allow-
able windward test panel length, added vehicle complexity, more difficulty in achiev-
ing a desirable c. g. location without increasing ballast, and a reduction in the yaw
stability.

3.2.2,3 Split flaps. - The feasibility of splitting the pitch flap toprovide roll con-
trol was experimentally investigated during the NASA/LRC Unitary Plan Wind Tunnel
tests of the nominal 2/7 scale SLAMAST model. Outboard split flaps of the same
area were also tested during this test period and will be reported on separately in
the SLAMAST Wind Tunnel Data and Analysis Report (to be published).
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The data of this section reveals the inboard split flap effects at 4. 63 Mach
number and zero yaw for differential deflections of 0, 15, and 25 degrees from a
nominal minus six degrees pitch flap deflection. The effects on lift force, pitch sta-
bility, yawing moment, rolling moment, side force, and yaw/roll coupling are pre-
sented in Figures 3. 2-14 through 3, 2-19, respectively.

Examination of these figures reveals that the following characteristics are
associated with split flap differential deflection:

(1) Small lift decreases over the tested pitch angle-of-attack range
(Figure 3. 2-14),

(2) Increased trimmed lift and pitch stability at trim (Figure 3. 2-15)
although these increases are typical of those obtained with both flaps deflected the
same amount as the average of the differentially deflected flaps. (Figure 3. 2-15).

(3) Both yaw and roll moments are created that decrease slightly with
positive pitch angle, and are approximately 16 ft-1bs nose left yaw and 8 ft-1bs left
side down roll at a dynamic pressure of 200 psf (roughly equivalent to W/C1.S of
200 psf) for the 1.6 meters long vehicle with 25° differential flap; the yaw-roll
combination is favorable towards a coordinated banked turn condition with enough
roll power to trim out one-third inch lateral c. g. offset or comparable roll rate
command. (Figures 3.2-16, 3.2-17 and 3. 2-19).

(4) The same 25° differential flap that produces 16 ft-1bs nose left yaw
also produces a right-directed side force of some three Ibs., the exact magnitude
being somewhat indeterminate due to the data scatter and accuracy revealed in
Figure 3, 2-18.

Essentially the same trends were observed in the 3. 95 Mach number data
for these flaps as for the 4. 63 data just commented on. In contrast, the outboard
split flaps produced much greater yaw due to roll differential deflection arising from
the outward cant of these split surfaces on deflection. However, the outboard flaps,
deflected uniformly, did provide somewhat higher (L/D)*'s and slightly less maximum
trimmed lift coefficients,

Since both inboard and outboard split flaps exhibited yaw due to roll, the
possibility of using skewed hinge lines for these surfaces to minimize yaw moments
was briefly examined. Such skewed hinge line orientations that could produce pure
flap-induced roll or pitch moments would do so only in a particular shock geometry at
one flight condition. Further analysis may reveal, however, that acceptable across-
the-Mach-number-range characteristics could be developed with particular hinge line
orientation,

In any event, use of split flaps for vehicle roll control requires the use of
another flap actuator and null-scnsing mechanisms whose weight, space, and com-
plexity become involved in trades with Reaction Control System added control gas
weight, volume, and tankage. Another consideration is that for a given flap size the
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trim angle of attack available is reduced when roll and pitch control are required
simultaneously. This has a direct bearing on W/Cy 8 and the range of pull-out altitudes
available. Initial study trades favored the RCS system over aerodynamic split flap
control. It is apparent that skewed hinge line arrangements and other aerodynamic
changes could conceivably change the trade-off factors to favor split flaps. However,

since this was a feasibility study rather than an optimization study the detail involved
is not warranted at this time,
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3.2.3 AERODYNAMIC PERFORMANCE, STABILITY, AND CONTROL

3.2.3.1 Static force and moment, -

3.2.3.1.1 Hypersonic: - Aerodynamic force and moment data are presented here for the
baseline SLAMAST shape of Figure 3.2-5. The information is intended for use only in
regions where the assumptions of modified Newtonian flow apply, e.g., approximately
10 M= 20,

The static force and moment variations in pitch for the SLAMAST baseline
vehicle are plotted as Figures 3.2-20 through 3,2-25 from the tabulated values of
Table 3.2-1, The resulting load information is contained in paragraph 3.2.4.2.

All data are for hodv alnne (flans at zera r]nﬂnnh’_nn} foar madifiad Nawtanian
- N ~ » - -

flow, without viscous effects, and were obtained through use of the FAB (Force on Arbitrary

Bodies) computer program. The single flap trim points incorporated in Figure 3.2-20
were obtained from the correlated flap effectiveness information of paragraph 3.2.3.2.
Examination of the figures of this section reveals that:

(1) The maximum trim angle-of-attack is 16, 0° with 40° of single flap de-
flection. The corresponding lift coefficient, drag coefficient, and L/D ratio are 0,215,
0,107, and 2,01, respectively,

2) The vehicle may be trimmeg throughout the angle-of-attack range from
zero to 16,0 with flap settings less than 40",

(3) Other control means, or enlarged flaps, are required for vehicle oper-
ation at angles above 16°,0°,

(4) The present vehicle is statically stable throughout the trim angle-of-
attack range,

3.2,3.1.2 Supersonic: - The estimated trimmed lift capability of SLAMAST versus Mach
number is shown in Figure 3.2-26 for 0,569 length center-of-gravity position, Lift capa-
bilities for three different flap arrangements are presented as derived from analysis of
recent NASA-LRC wind tunnel tests of the nominal 2/7 scale SLAMAST model. Also
shown in the figure are representative data regions for cones, elliptic cones, and elliptic
conoids, derived from references 3,2-6 through 3.2-11 for an assumed trim pitch angle
capability of 150 for Mach numbers less than 3,50, The solid line of Figure 3.2-26 is
the resulting estimate of SLAMAST lift capability, based on the NASA results and the
modified Newtonian estimates for 10 < M < 20,

3.2,3.2 Static stability and control. - The variation of flap deflection angle with pitch
angle-of-attack is presented in Figure 3,2-27 for 10 = M < 20, and a 0.569 IRgF C.8.
The variation was determined from a combination of forces and moments for the blunt-
nosed SLAMAST shape and for a single flap, The body estimates were based on modified
Newtonian Theory; the flap values were determined by subtracting flap deflected values
from undeflected flap data on a right circular cone plus flap configuration, The incre-
mental flap values were then verified by comparisons with other similarly derived data
on a conoid and on a NASA model somewhat similar in shape to SLAMAST,
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The remaining figures of this section Figures 3.2-28 through 3,2-40
present the effect of center-of-gravity location on the trim lift capability, pitch trim
angle, and lift-to-drag ratio at 3.95 and 4.63 Mach numbers, as obtained from NASA
Unitary Wind Tunnel results. A detailed discussion of the figures presenting these
tunnel results, as well as of other wind tunnel test results, will be found in the "SLAMAST
Wind Tunnel Data and Analysis Report' on the NASA tests. This report will be issued in
the near future.

Some limited conclusions from inspection of these figures are, however,
in order, The figures reveal that:

(1) The basic inboard flap geometry provides higher trim lift capability but
lower (L/D)* than the outboard flap arrangement (data not shown here) at both test Mach
numhare (2 08 ond 4,23},

(2) The loss in trim effectiveness of the outboard flap arrangement is due
to trimming moment losses attributable to a combination of flap resultant force vector
canted outboard, away from the vertical plane of symmetry, and a counter-trim force
induced by cross-flow acting on the flap outboard edges.

(3) The tunnel results for the basic configuration can be readily extrapolated

to the earlier modified Newtonian estimates which, consequently, remain current for
SLAMAST,

Additional information on differentially deflected split flaps is presented in
paragraph 3,2,2,3 for the same inboard split flaps reflected in the data of this section,
The plots of this section reveal that the pitch stability margin increases from minimum
values of approximately one percent at both 3,95 and 4.63 Mach number for zero pitch
angle, to values in excess of five percent at the maximum trim condition and at the design
flight c.g. location of 56.9 percent vehicle length., These magnitudes are not expected to
change appreciably at higher Mach numbers because the vehicle center-of-pressure loca-
tion is relatively fixed at Mach numbers above five,

Since split-flap control combined with a reaction control system was thought
to offer possibly better overall means of roll stabilization and control, split flaps were
built into the test SLAMAST model. The basic flap arrangements were tested, as well as
both inboard and outboard split flaps, at 3.95 and 4,63 Mach number in the NASA-LRC
Unitary Plan Wind Tunnel to provide aerodynamic data for use in the SLAMAST contrac-
tual activity.

A combination of both inboard and outboard flaps that would increase control
power, thus permitting the attainment of higher trimmed lift and a lower lift loading,
w/C LS, was not tested nor were 25 percent oversize inboard flaps. Such increased
control power could be required if weight increased, lift-curve were reduced, or predicted

hypersonic control effectiveness could not be achieved in the vehicle design-to-flight
evolution,

Although the stability margin could conceivably be reduced to provide higher
trim angles of attack, the present stability margins at and near zero pitch angle of attack
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are quite small, A better approach would be to increase control size. Outboard split
flaps could be considered, with the flap hinge lines skewed to avoid the deleterious effects
of outboard cant found with the outboard flap arrangement recently tested on the SLAMAST
model in the NASA Unitary Plan Wind Tunnel.

3.2.3.3, Lateral-directional characteristics, -

3.2,3.3.1 Hypersonic: The lateral-directional characteristics are presented here for
the baseline SLAMAST shape of Figure 3.2-2. The information is intended for use only

in regions where the assumptions of moditied Newtonian flow apply, e.g., approximately
10 M= 20,

The static variations of side force, yawing moment, and rolling moment
coefficient with sideslip angle for the SLAMAST baseline vehicle are plotted in Figures
3.2-41 and 3.2-42 from the tabulated values of Table 3.2-1. All presented data are for
body alone (flaps at zero deflection), for modified Newtonian flow, without viscous effects,
and were obtained through use of the FAB (Force on Arbitrary Bodies) computer program.
Examination of the figures of this section reveals that:

(1) The present vehicle is statically stable throughout the trim pitch angle-
of-attack range.

(2) Control means are required to trim out either yawing or rolling moment,

3.2.3.3.2 Supersonic: Presented in Figures 3,2-43 through 3.2-48 are selected lateral-
directional characteristics obtained from tests at 3,95 and 4.63 Mach number in the NASA-
LRC Unitary Plan Wind Tunnel. No yaw runs were made during those tests and the lateral -
directional information is limited to that obtained from five degree sideslip runs compared
to the same model configuration at zero sideslip. However, one configuration was tested at
both plus and minus sideslip angles and was consequently selected for this discussion of
typical results., That model configuration employed outboard split flaps, differentially
deflected 25° (right flap at -6° and left flap at -3 10). The relative yaw center-of-pressure
location aft of the pitch center is presentedin Figures 3.2-43 and 3.2-44 in terms of frac-
tional length, for 3,95 and 4.63 Mach number, respectively. The figures indicate that the
vehicle's yaw center-of-pressure is approximately eight percent of vehicle length behind the
pitch center near zero pitch angle, and above four percent at pitch angles above 12 , at
hoth test Mach numbers, a slightly higher margin existing at the 4,83 Mach number test
condition, This favorable difference in centers-of-pressures is due to the SLAMAST shape,
tailored to be more stable in yaw and thus require little reaction control gas expenditure
for vehicle yaw stabilization,

The relatively large excursions for the +5° sideslip angle curves of Figures
3.2-43 and 3.2-44 are due to the difficulty of determining yaw derivatives from small yaw
data. This is represented by the fractional length pitch and yaw center-of-pressure data
of Figures 3,2-45 and 3,2-46 from which Figures 3.2-43 and 3,2-44 were prepared. A
comparisen of these four figures reveals that the zero sideslip curves of Figures 3,243

and 3.2-44 are the more meaningful, but also reveals that wind tunnel yaw runs are re-
quired for more adequate definition of the yawed vehicular characteristics.
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and Angle-of-Attack, Inboard Flaps at M = 3, 95

(as derived from NASA/LRC - UPWT data)
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Figures 3.2-47 and 3.2-48 complete the coverage of the lateral-directional
aerodynamm characteristics, and present the changes in pitch stability with yaw for the
25° differentially deflected outboard flap model configuration, The figures show very

little change of the pitch stability due to slight yaw, even for the most asymmetrical of
the model configurations tested.

Further comments on split flaps may be found in paragraph 3.2.2.3.

3.2.3.4 Dynamic stability. - Presented in this section are body alone estimates of

the rotary damping derivatives for 10 = M =< 20, Theestimates are presented in Tables
3.2-2 through 3,2-5 and in Figures 3.2-49 through 3.2-52, as obtained under the assump-
tion of modified Newtonian flow through use of the FAB (Force on Arbitrary Bodies)
computer program.

The damping derivatives were computed at a wL/2V of 1/1200 in pitch
(W =q), yaw (w = r), and roll (w = p), These derivatives were determined by subtract-
ing the static coefficients from those produced during a steady state rotation about each
of three axes, and then divided by wL/2V, where w is the rotational rate, L the vehicle
reference length, and V the freestream velocity vector magnitude.

The prese'nted derivative information is for body alone (flaps at zero
deflection), without viscous effects, and for a center-of-gravity location of 56.9 percent
of vehicle length,

A comparison of the modified Newtonian predictions for SLAMAST and the
SORTIE 1-D shape is presented in Figure 3.2-53, together with SORTIE 1-D dynamic
stability test data obtained at 10,18 Mach number and Reynolds' numbers from 0,45 to
3.31 million, based on model length., The comparison of damping-in-pitch information
reveals that the two configurations have much the same damping value at zero pitch angle,
SORTIE predictions indicating more than SLAMAST with increasing pitch angle of attack.
The obtained SORTIE test data indicates approximately half the predicted values over the
test ranges of pitch angle and Reynolds number,

In the same figure (Figure 3.2-53) is shown the yaw damping term C,_com-
parison, More limited information is shown here, SLAMAST predictions for 0,569L c.g.
and SORTIE 1-D test data for 0.5L c.g., this being the extent of the immediately available
data. The comparison indicates that SORTIE test values slightly exceed SLAMAST pre-
dictions over the cited test ranges, as might be considered reasonable in view of the simi-
larities that are shown in the geometric comparison of Figure 3,2-54.

All the SORTIE test information was obtained at an exciting frequency of
eight cycles per second. The model itself was 18,19 inches (0.4620m.,) long with a
89.86 square inches (0.05797 sq. m.) planform reference area., The tests were con-
ducted in AEDC's Tunnel C which at M = 10 has a test section total temperature of about
1900°R. Forced oscillation of the model was made with a one degree-of-freedom (DOF)
balance oriented for pitch and yaw tests, the model being bolted to the balance such that
the cross~flexure pivot is centered at the desired model moment reference center (c.g.)
about which the model is also mass~balanced.
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In forced oscillation testing, an external torque is imposed n *the balance in
phase with the natural flexure and aerodynamic restoring moment until a constant amplitude
oscillation is obtained both wind on and wind off. The difference in torques yields a measure
of dynamic damping,

Additional damping~in-pitch data from LTV tests of a 0. 396 ft, SORTIE
model at 17,3 and 20,3 Mach numbers shown in Figure 3,2-53 indicate agreement with
Newtonian predictions at pitch angles near 16° and similar differences at lesser pitch angles
as found in the M = 10, 18 results, The LTV tests were conducted with an excitation fre-
quency of 205 cycles per second at 0,15 to 0,43 million Reynolds number.

TABLE 3.2-2, SLAMAST ROTARY DERIVATIVES IN PITCH FOR MODIFIED
NEWTONIAN FLOW, VARYING C.G. LOCATION, ANDB =0

Il?ott%g @, Pitch angle-of-attack, deg
Derivy| X 0 5 10 15 20 25
ative cg

.50 -.,08182 -.08148 -.,09624 -.11940 | -,14244 -. 16488
Cm .569 |-.07584 -.07560 -. 08856 -.10884 | -, 12924 -.14892

q

.60 1-.07602 | -.07572 | -,0c844 | -,10836 | -.12828 | -.14772

.50 . 07424 .07392 -.09300 . 12336 . 15288 . 18106
CNq . 569 . 01176 .01180 01386 . 02943 . 03984 . 4956

.60 -.01618 -.01610 -.01518 -.01276 | -, 01096 -.00951

90 0 «64290 1,0576 1.3044 1.5360 1,7760
100

. 569 0 . 09948 .12384 . 08556 . 05964 . 04690
CAq

.60 0 . 14470 . 29500 .46200 .60600 « 72960
NOTES:

1. qL/2V is 1/1200 for all derivatives shown

2. C’f/q = CYq =C =0

fiq
3. CLq, CDq, and (L/D)q are presented as secondary rotary derivatives in Table 3.2-5,
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TABLE 3.2-3. SLAMAST ROTARY DERIVATIVES IN ROLL FOR MODIFIED
NEWTONIAN FLOW AND 8 = 0

Roll \ o«
Rotar 0 5 10 15 20 25
Deriv-
ative
CYp 0 -.01496 -.02736 -.03580 -. 04304 -.04966
Clp -.00358 -. 00357 -.00395 -.00482 -.00572 -, 00660
Ch. . 00002 .00186 . 00343 .00448 | .00539 .00619
L ° l I J
NOTES:
1. pL/2V is 1/1200 for all derivatives shown.
2. = - = = = ped
C, = CN Car Ch CL (L/D)p 0
p p P p
3. Center of gravity at 0. 569 vehicle length (design).

TABLE 3,2-4, SLAMAST ROTARY DERIVATIVES IN YAW FOR MODIFIED
NEWTONIAN FLOW AND VARYING SIDESLIP ANGLE

Yaw
Rotary &, Pitch angle-of-attack, deg
Deriv-| B 0 5 10 15 20 25
ative
0 .26834 .26732 .27371 .29755 .32726 .35795
CYr 5 .26732 . 266186 . 28050 .30368 .33045 .35874
10 .27060 . 28308 .30204 .32328 34752 .37308
0 0 . 01037 . 01900 . 02486 . 02988 . 03444
C1 5 0 .01032 . 01809 .02421 . 02949 . 03426
r
10 0 . 00840 . 01596 . 02256 . 02820 . 03324
0 -.05141 -.05121 ~-. 05232 -.05679 -.06230 -.06819
Cnr 5 -.05120 -.05101 -.05362 -.05803 -.06304 -.06829
10 -.05184 -. 05424 -.05784 -.06180 -.06636 -.07104
NOTES:

1. rL/2V is 1/1200 for all drivatives shown,
2. Center-of-gravity at 0.569 vehicle length (design).

3. Secondary derivatives shown in Table 3, 2-5,
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1. Secondary roll derivatives are zero,

2, pL/2V and rL/2V are both 1/1200 for all derivatives shown,

4¥.

0= M< 20usec,

i
l TABLE 3. 2-5. - SECONDARY SLAMAST ROTARY DAMPING DERIVATIVES
(a) In Pitch, at three C,G. locations, with B = 0
l -Pitch
STy | c.G., @, Pitch angle-of-attack, deg
l ative X/L 0 5 10 15 20 25
.50 . 07423 .07311 . 08974 .11581 | ,13839 | .15658
l Crq | -569 .01185 . 01167 .01785 .02821 | ,03722 | .04472
.60 -.01617 -.01592 | -,01444 -.01113 |[-,00943 [-,00747
' .50 0 .01285 | 02656 .04453 | .06679 | .09261
CDq .569 0 .00201 | .00440 .00843 | ,01419 | ,02125
l .60 0 -.00284 | -,00554 -.00776 |-.00944 {-,01064
.50 3.5948 1,5577 . 50556 .24096 | .12960 | ,65400
. (L/D) { .569 .57392 .25104 | .13920 .11076 | .07680 | .05328
l .60 -. 78324 -.33552 | -.02532 +,05232 |+,05316 |+, 04236
(b) In Yaw with B =0, 5, and 10 deg. and C.G. at 0.569L
l gf,:’ary @, Pitch Angle-of-Attack, deg.
Deriv- | B 0 5 10 15 20 25
ative
l 0 0 .00001 | -,00008 -.00010 | -,00013 |[-,00013
CL, |5 0 .00199 | -,01865 -.02656 | -.02777 |-,02678
l 10 0 -.01378 | -,03887 -.05970 | -,05424 |-.05264
-.02348 | -,00010 -.00010 | -.00010 -.00011 | -,00012 |-,00014
. Cp. |5 0 -.02332 | -,02335 -. 02497 | -,02682 |-,02828
' 10 -, 04570 -.04408 | -,04494 -.04831 | -.05203 |-, 00520
0 0 .0080 . 0030 .0012 | ,0008 | ,0004
' (L/D),| 5 0 1.67 .65 .26 .12 .06
10 0 2,04 1,07 .47 .23 .12
. NOTES:
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3.2.4 AERODYNAMIC PRESSURE DISTRIBUTIONS AND LOADS

3.2.4.1 Pressure distributions. -

3.2.4.1.1 Nose cap: The nose cap pressure distributions presented in Figure 3. 2-55
through 3. 2-59 were obtained through use of the information contained in references
3.2-2, 3.2-5 and 3. 2-12. Reference 3.2-12 contains pressure distributions obtained at
a Mach number of seven for a nose similar to that for SLAMAST except in having
approximately twice the ellipticity in cross-section.

The data of the reference are presented in terms of pressure coefficient values
which were transformed to fractions of the stagnation value to provide basic SLAMAST
nose cap pressure distributions. Adjustments to these basic distributions were then made
through use ot the intformation contained in reterences 3. 2-5 and 3.2-2 to account for the
configuration differences. The resulting nose cap pressure distributions of Figure 3. 2-55
through 3. 2-59 are considered to be sufficiently representative for the purposes of the
SLAMAST feasibility study, but should be replaced with more accurate data as it be-
comes available.

The nose cap and the other pressure distributions of this section are intended
for use only in regions where the assumptions of modified Newtonian flow apply; e. g. ,
approximately above a Mach number of 10, but may be used for Mach numbers as low
as 7 without appreciable error.

3.2.4.1.2 Body: - The body portion aft of the nose cap has a wrapped surface, or one
which can be peeled away to form a flat pattern without concavity, except for the body

flat (scalloped) areas. The body geometry is defined in considerable detail in paragraph
3.2.2.1. The pressure distribution for the wrapped surface body portion can be described
by a single variation of pressure for a given pitch angle-of-attack if plotted with peripheral
surface slope and if carry over effects from the nose are neglected. This occurs since
pressure is dependent on peripheral slope and not on meridian angle, as pointed out in

and confirmed by the test data of reference 3. 2-5. The data of that reference and from
references 3. 2-2 and 3. 2-12 were consequently employed to generate the wrapped sur-
face pressure distributions presented here as Figures 3. 2-60 and 3. 2-61. The associated
variation of meridian and peripheral slope angles is found in Figure 3.2-4. These data
should, of course, be replaced by test data for the specific SLAMAST shape when those
data become available.

3.2.4.1.3 Pitch flap: Pressure distributions for the single-flap of the basic SLAMAST
configuration were prepared for flap deflection angles of 0 to -40 degrees and pitch
angles-of-attack from -10 to +12, all at zero yaw angle-of-attack. A representation of

the shock geometry and a typical flap pressure distribution are shown in Figures 3. 2-62
and 3. 2-63.

The single-flap estimations were derived from a combination of available
in-house test and analytical results, particular calculations for the basic SLAMAST
flap, and by comparisons with other available data. The flap geometry employed in
the in-house tests was similar to the SLAMAST flap, although the body was a 5°
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right circular cone, rather than the SLAMAST modified elliptic conoid shape. The
obtained data were then modified to the particular SLAMAST flap geometry for study
use. Pressure measurements on the body were limited to a few taps on the body flats
Just adjacent to the hinge line. Figure 3. 2-63 presents a representative example of
those flap pressure distributions employed in the study.

The data are believed accurate within an overall +20% error band for Mach
numbers between 10 and 20 at Reynolds numbers less than 2. 5 million per foot. Use
of the data for Mach numbers from 8 to that at atmospheric entry and for Reynolds
numbers less than 5. 0 million per foot may increase the possible error to within plus-
or-minus 30 percent.

No altitude restrictions were placed on the use of the data during the study,
although the extent of separated flow may increase at the higher flight altitudes within
SLAMAST performance capability. The consequent decrease in flap effectiveness

(with increased separation) would also be reflected in changed pressure distributions,
hinge moments, and loads.

Since the vehicle performance depends on trimmed lift capability, and thus
on flap effectiveness for a given center-of- gravity location, more accurate knowledge
of the flap pressures is required for efficient vehicle design. Flap pressure distribution
tests are therefore recommended prior to fixing final flap design for the prototype
vehicle. Such tests should be initially at a Mach number of eight or greater with Reynolds
number variations encompassing flight conditions (within tunnel capability) to provide
an assessment of changed flap performance with Reynolds number and the viscous-inter-
action parameters, V and i Since flap size, planform geometry, orientation of the
hinge line, and sealing are among those parameters that directly affect flap performance,
a limited assessment of such factors should be included in the pressure tests.

3.2.4.1.4 Correlation of flap centerline pressures: A simple method coupled with limited
available data has provided a correlation of flap centerline pressures as shown in Figure
3.2-62. It appears that the method is a logical step toward analytical prediction of flap
pressure distribution that would include the characteristics of the separated region, such
as separation angle, Reynolds number at the separation '"point', etc.

Past attempts to analytically correlate flap pressures have employed a strip-
theory approach. This approach works quite well for vehicles with nose bluntnesses
(rn/ rp) order of or greater than .12, but not as well for sharper nosed configurations.
The limits of the approach may be expained by the following:

(1) The shock layer gradients are very small at the base of sharp nosed
vehicles while the surface Mach number is very high. This causes the flow over the
flat and in the region of the flap to be partly instead of fully expanded as was assumed
in the analysis.

(2) Viscous effects are more significant on sharp nosed vehicles as evidenced

by localized flow separation noted at the juncture of the flap and the flat in Schlieren
phoiographs of a recent test.
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The strip theory method on the sharper nosed vehicles yielded peak plateau
pressures which approximate one-half the measured values. This prompted the present
correlation since the only way to increase the pressure recovery on the flap was through
a system of weaker shocks (rather than a single strong shock). The resulting inviscid
flow model and a comparison of the theory is shown in Figure 3.2-62. It was necessary
to assume that the flow separated just before the flap and did not expand onto the flat.
This assumption was justified by inspecting a Schlieren flow photograph for this particular
test configuration. The flow reaching the upper portion of the flap has gone through the
bow shock, the separation shock, and the reattachment shock. The separation is also
quite extensive with a low inviscid plateau pressure coefficient, characteristic of laminar
flow separation.

3.2.4.2 Loads and hinge moments. - This section presents the body alone cumulative

uuiingl lorce coelllclent, cumulative axial torce coetficient, incremental moment coefficient,

and cumulative moment coefficient distributions with fractional vehicle length in Figures
3. 2-64 through 3. 2-67, respectively. The data were prepared through use of the pressure

distributions of paragraph 3. 2. 4. 1 and the modified Newtonian force and moment results
of paragraph 3. 2. 3. 1.

Flap loads and hinge moments are subsequently presented in Figures 3. 2-68
through 3. 2-74 to complete the configuration load and hinge moment data plots. Inspection
of the flap load and hinge moment plots reveals that lower angles-of-attack and higher flap
deflections together mean higher loads and moments. Consequently, close examination of
transient flight conditions is required to establish the maximum load and hinge moment
conditions, which could be higher than the trim values illustrated in Figure 3. 2-74.

Figure 3. 2-68 presents flap panel load coefficient variation with pitch angle,
while Figure 3.2-70 is a cross-plot of the data in Figure 3.2-68. The flap hinge moment
coefficient variation with pitch angle-of-attack is presented in Figure 3. 2-71; a cross
plot of the data of that figure is shown as Figure 3. 2-72. Figure 3. 2-74 presents the
trimmed variation of flap hinge moment determined by Figures 3. 2-64 through 3. 2-66.

These flap data were obtained by three-dimensionally integrating flap pressures
for panel loads and a moment of area of the same for hinge moments. The magnitudes of
both are lower than those associated with axisymmetric maneuvering re-entry vehicles,
due to the anticipated laminar flow environment. Separated flow is anticipated over as
much as 40% of the flap.

Supplementing the flap hinge moment and panel load information of Figures
3.2-68 and 3. 2-72 for positive pitch angles-of-attack is the information for negative
angles-of-attack up to 20 degrees presented in Figures 3. 2-69 and 3. 2-73. That in-
formation was obtained in this manner: the local flap angle of attack was assumed equal
to the free-stream value plus flap deflection into the stream, or aLF =0, -« P
where ap  is negative with upward deflection from the body flat, parallel to vehicle
centerline. Cross plotting and re-plotting of the referenced data thus provided the curves
for negative pitch angle. Data accuracy is estimated at +25% between Mach numbers
of 10 and 20 at Reynolds numbers of less than 2. 5 million per ft.
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The hinge moment coefficient data are based on flap area and chord length,
. 7867 sq/ft. (.0731 sq. m.) and . 875 ft. (10.57 in. or .2674 m.), for the 63 inches
(5. 25-ft or 1. 600 m.) long SLAMAST vehicle. The load coefficients are based on flap
area alone.

NOTE: For other vehicle sizes employing the SLAMAST shape, the reference
lengths may be scaled by vehicle length. (e.g., 3.2 m. Vehicle; M. F. =3.2/1.6 = 2).

onr Area, use square of the scale ratio. (e.g., 3.2 m. Vehicle; M. F. = (3.2/1.6)2 =
24 = 4),
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3.3 FLIGHT DYNAMICS STUDIES

3.3.1 TRAJECTORY STUDIES

3.3.1.1 Powered flight. - The three stage Scout booster was determined to be
adequate to supply the necessary re-entry velocity for the SLAMAST vehicle. To
establish the feasibility of the three stage Scout, several powered flight trajectories
were generated as a supplement to the Scout boost trajectories supplied by NASA/LRC.
This work indicates that the Scout has ample capability and flexibility to provide the
re-entry conditions and separation altitude required by the SLAMAST system. For
this study, separation was defined to occur nominally at 400, 000 ft., and trajectories
were generated which achieved the desired burnout altitude as well as the desired
re-entry conditions. Table 3. 3-1 presents a tabulation of the pertinent trajectory
parameters. The runs consist of a "nominal" shallow re-entry and three variations
on boost variables to determine re-entry sensitivity for this type of boost profile.
Range at re-entry is very sensitive to these boost phase variations and must be con-
sidered as a prime parameter in the choice of the boost trajectory from the standpoint
of tracking, range safety, and recovery. Path angle is moderately sensitive, while
re-entry velocity is quite insensitive. The effect of path angle perturbations on the
re-entry trajectory can be desensitized through the use of the flight path control system,
and thereby becomes a less prominent effect on the choice of boost trajectory.

3.3.1.2 Re-entry conditions. - Re-entry trajectories were generated for a range

of W/CLS from 150 to 250, re-entry velocities from 15, 000 to 25, 000 fps, and re-entry
path angles from -1.0 to -5. 0 degrees in order to supply parametric data for trade-off
purposes and to yield the sensitivities of trajectory parameters to the vehicle charac-
teristics and re-entry conditions. The maneuvers are pullouts to constant altitude,
in-plane flight using pitch modulation only (zero bank). The maneuvers consist of
three phases:

(1) Pullout. - A constant angle of attack providing the specified W/CLS is
maintained from re-entry (400 K feet) until a pullout to horizontal flight is achieved.

(2) Horizontal flight. - The angle of attack is modulated to provide the
lift necessary for horizontal flight. The angle of attack increases as the dynamic
pressure decreases until the angle of attack for the specified W/ CLS is attained.

(3) Terminal glide. - The angle of attack is held constant and the vehicle
glides to impact.

These trajectories were generated for parametric investigation of vehicle
environment only and do not incorporate the recovery phase of the SLAMAST mission.
Figures 3.3-1 through 3. 3-3 show stagnation heating profiles for the 25, 000 fps re-
entry cases. Figure 3.3-4 shows peak stagnation heating as a function of re-entry
path angle, re-entry velocity, and W/CLS. For the high re-entry velocity (25, 000 fps)
the peak stagnation heating is a strong function of both re-entry path angie and W/C; S
during pullout. For a range of re-entry angle from -1.0 deg. to -5.0 deg., the pe
stagnation heating more than doubles, while a range of W/C. S from 200 to 10
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in a peak stagnation heating increase of about 50%. As the re-entry velocity is
lowered, however, the peak stagnation heating becomes virtually independent of re-entry
path angle. These lower velocities produce a substantially beneficial effect when

consideration is given to the path angle dispersions at re-entry that are caused by the
boost phase of flight.

3.3.2 DESIGN TRAJECTORIES

The two bounding re-entry trajectories selected for design purposes are
pullouts to constant altitude flight for re-entry conditions of Vo = 20,000 fps. and re-
entry path angles of 1 and 10 degrees, respectively. These bounds were chosen to
obtain a long time thermal soak trajectory for environment simulation (shallow re-
entry) and a shorter time, high 'g'" trajectory to simulate the loading during an abort
trajectory (steep re-entry). The pullout angle of attack is 16 degrees. The constant
altitude flight is achieved by modulating the angle of attack while holding a zero roll
angle. At 700 seconds from re-entry (400 K feet) a drag brake is deployed on the
bottom of the vehicle and the pitch flap is deployed to trim the vehicle to a zero lift,
high drag condition. The vehicle then performs a ballistic flight down to approximately
25 K feet where the recovery subsystem sequence is initiated with the deployment of a

Th 3 3 3 T A3 ot 1 x T+ £
FIST chute. The trajectorics were generated using the TRICOP digital simulation of

three-degree-of-freedom motion assuminginstantaneous trim. The pertinent trajectory
parameters are presented in Figures 3. 3-5 through 3.3-12. The experiment trajectories
are not necessarily confined to horizontal flight but will consist of a pullout to some
shallow path angle, either negative or positive, which is required to provide the desired
environment history. The re-entry path angle and pullout angle of attack may also be
varied for the experiment trajectories, subject to the design constraints.

3.3.3 FOOTPRINT STUDIES

Range safety footprints have been generated for the two design re-entry
conditions. These footprints are obtained considering a system malfunction which results
in trim to maximum L/D and a fixed roll angle. The footprints comprise Figures 3.3-13
through 3.3-16. The first two footprints correspond to failure at re-entry, while the
second two consider failure at 350 seconds from re-entry. The total footprints are
extremely large and only 1, 200 seconds of flight are shown, since this is the area of
concern in the discussion of range safety requirements. The range safety problem is
primarily a cross range problem since large downranges can be tolerated and a terminate
on time criterion would be sufficient for downrange considerations. A few relatively
simple criteria for termination of flight would be sufficient to reduce the footprint to
tolerable dimensions. Such termination could be achieved by any of several means
such as a 180 degree bank, deactivation of the roll control system to allow spin-up, a
commanded spin up with the roll control nozzles, or explosive destruct. The method
of flight termination will be chosen to maximize the data recovery probability in the
event of a malfunction. The obvious flight termination criterion of time can be used
to eliminate a large part of the footprint. For example, if the flight is terminated
when the drag brake deployment signal is not sensed by 800 seconds from re-entry
(nominal time of deployment plus 100 seconds), the downrange problem is eliminated
and some crossrange is eliminated {(see Figure 3.3-17). The maximuin crossrange
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for re-entry failure is still about 1, 000 n. mi., however. If a limit on the product of

bank angle and time is imposed, the maximum crossrange can be reduced to an acceptable
amount. For example, Figure 3.3-17 shows that a limit of 10, 500 deg-sec limits the
crossrange to 240 n.mi. The two termination criteria together reduce the footprint to the
crosshatched area of Figure 3.3-17. Of course, the second criterion is useless if roll
reference is lost and a back-up system would probably be necessary.

3.3.4 RECOVERY ENVELOPE

The recovery footprint for nominal tolerances on the primary trajectory
influencing variables has been investigated. A +10% 1o variation on atmospheric
density was assumed for the computation of range uncertainty. The nominal roll
reference drift and the yaw angle due to the center of gravity tolerance were considered
tor the crossrange uncertainty. Under the assumption of independence of these variables
the 3 ¢ impact ellipse has a semi-major axis in the range direction of 450 n.mi. and a
semi-minor axis in the crossrange direction of 44 n. mi. The compensating effect of
control system #2 described in Section 4.1 however, reduces the 3 g range error to
+170 n.mi. However, the control system mean roll error increases the 3g cross-
range error to £110 n.mi. The resulting 3 0 recovery area is therefore +170 n. mi. in
the range direction and +110 n. mi. in crossrange.

The deployment conditions for the recovery chute are quite insensitive to the
trajectory flown, provided the drag brake deployment functions in a near nominal fashion.
For the zero-lift, high drag condition of SLAMAST with a deployed brake flap, the
trajectories approach a terminal flight condition at low altitudes and this terminal flight
is independent of the prior trajectory history. The conditions at minimum dynamic
pressure for a 30 deg flap deployment are:

q* = 200 psf
h = 41,000 ft.
Mach = 0.88
3.3.5 TIP-OFF RATE TOLERANCES

A six degree-of-freedom simulation of the exospheric motion of the SLAMAST
vehicle following booster separation was performed in order to define the expected
tolerances in angle of attack and body rates at re-entry. The cold gas system defined
in paragraph 4.1.1. 2 having a dead band of 5° and a transport lag of 0. 03 seconds for all
three channels was used for this analysis. Initial conditions for body angular rates
have been assumed to be 2°/sec about all three axes; these values are typical of the
3 0 separation rates obtained from the three-stage Scout-Re-entry F analyses.

Following separation, a one (1) second coast period was assumed prior to
initiation of the controller in order to obtain an error signal composed of both angle and
rate. This time period is not critical to the successful operation of the controller but
should be low eneugh such that large angular errors are not attained. It has been tacitly

102




assumed that the platform axes at separation are aligned in such a fashion that the
platform longitudinal axis lies along the re-entry velocity vector. Thus, a pitch
command value of 14° has been applied to the controller in order that, at re-entry,
with the pitch flap deployed at 30°, an aerodynamic trim condition prevails.

Figure 3. 3-18 represents a view of the vehicle longitudinal axis angular
deviations from an inertially fixed frame. In this figure, the vehicle pitch axis has
been commanded to an angle of 14°. The vehicle axis rises from its initial condition,
(zero angle and 29/sec about the pitch and yaw axes) until acquired, at which time
both axes enter their limit cycle with a deadband of 5°. The motion is completely
controlled during all phases of operation. Figures 3. 3-19 through 3. 3-21 show the
phase plane motion of the vehicle about all three axes, which indicate both acquisition

and limit cycle operation. Utilizing this data, the re-entry condition tolerances have
been tabulated in Table 3. 3-2.

3.3.6 VEHICLE INERTIA CHARACTERISTIC TOLERANCES

The effects of products of inertia tolerances on the exospheric motion was
investigated in order to determine acceptable values. A principal axis tilt of 0.1
degrees was assumed about each axis, corresponding to a maximum dynamic unbalance

of 3,300 oz-in2, The results indicate that these values have virtually no effect on the
exospheric controller performance.

Since the present system design is launched from the non-spinning 3 stage
Scout launch vehicle, spacecraft despin analyses were not performed.

TABLE 3. 3-2. -RE-ENTRY CONDITION TOLERANCES

Channel
Error Roll Pitch Yaw
Angle (deg) +5 +5 +5 +5 +5 +5
Rate (deg/sec) 2.1 -5.8 L7 -.5 .3  -.35
3.3.7 RE-ENTRY DYNAMICS

A six-degree-of-freedom simulation of the atmospheric motion of the
SLAMAST vehicle during re-entry and pullout was performed in order to define the
complete operation of the vehicle system. In order that the analysis produce char-
acteristics which might severely affect the flight, only those items which are con-
sidered to be of prime importance to the vehicle behavior were considered.

The successful operation of a maneuvering vehicle necessitates adequate
roll control in regions of high normal loading, primarily the pullout phase. It is
during this phase of flight that the normal loading, coupled with a lateral center of

\
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gravity offset, produce the maximum external roll torque which must be successfully
countered by the roll control system. Since the pullout altitude is a function of the
vehicle bank angle, the trajectory is unstable from the point of view of roll angle

and could not perform a pullout maneuver if the roll control is inadequate. While
design analyses are based on this fact, a simulation brings out effects which are
generally not included in the preliminary design cycle; aerodynamic coupling effects
caused by dynamic motion is an example of unaccounted for-torques.

The trajectory shown is one in which a lateral center of gravity offset
of 0. 02 inch was applied to the system along with an initial angle-of-attack error
(from the desired trim value) of 1. 0 degrees. The trajectory is shown in Figure
3. 3-22, which indicates a successful pullout and a slight climb thereafter. Since
the flight path control was not completely tuned to a constant altitude flight, the
perturbation in altitude was not unexpected. The angle-of-attack history, shown in
Figure 3. 3-23, exhibits a well-damped oscillation in attempting toreach the required
trim value prior to pullout. At pullout (90 seconds), the flap backs off in order to
reduce the angle of attack such that a skip-type flight is not obtained. The angle-of-
attack motion exhibits rapid reduction due to flap reduction followed by a damped
oscillation as the flap moves slowly upward to maintain virtually constant altitude.

Figure 3. 3-24 shows the bank angle history throughout re-entry with the
cold gas system in operation at a 5 degree deadband. The initial oscillation in bank
angle is caused by the roll torque produced by aerodynamic coupling through the tor-
que produced by sideslip oscillations. As the lateral motion becomes damped, the
vehicle assumes a biased roll angle which is caused by the roll torque produced by
vehicle normal g's and a lateral center of gravity offset of 0. 02 inch. Following
pullout (90 seconds), the reduction in normal g's causes the roll angle limit cycle
to increase as shown. This limit cycle is biased in the positive direction which is
produced by the nominal one ‘g' flight required to fly constant altitude, and the side-
slip oscillations attendant to the coupling caused by the angle-of-attack change. The
bank angle motion, viewed in toto, while cyclic nature,has been adequately controlled
by the cold gas system.
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Figure 3. 3-19.
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3.4 THERMODYNAMIC STUDIES

3.4.1 AERODYNAMIC HEATING

All thermodynamic calculations have been determined for the SLAMAST
configuration as illustrated in Figure 3. 4-1.

The trajectories considered have the following initial entry conditions

1° Entr 10° Entr
~ _Lnry 20 _Latry

Altitude (feet) 400, 000 400, 000
Velocity (feet per second) 20,000 20, 000
Entry angle (degrees) 1 10

W/CLS (Ibs. per foot square) 250 250
Pull-out altitude (feet) 142, 000 115, 500

and are shown in Figures 3.4-2 and 3.4-3. Note that in Figure 3. 4-2 (the 1°

entry case) the dotted lines represent an additional 70 seconds of glide time to the
actual trajectory. This additional 70 seconds is carried throughout in all 1° entry
calculations. The effect of this is a small percentage (approximately 5%) increase
in total integrated heating since the additional time occurs just prior to drag brake
deployment. As a result temperatures and degradation would be negligibly changed.

Pressure distribution used in evaluating the skirt - windward, leeward,
and side - elliptical heating correlations are shown in Figures 3. 4-4 and 3. 4-5.

Figure 3. 4-6 shows the pressure distribution used in evaluating the pitchflap and
dive break,

3.4.2 NOSE CAP HEATING

Stagnation point convective heating (to an axisymmetric stag point) was
calculated through use of the ''Planetary Aerodynamic Heating Program' (PAHP)
reference 3.4-1, which uses Lees' theory reference 3.4-2 modified through use of

Eckert's reference enthalpy technique, reference 3. 4-3.

In Lees' equation,

0.5
- +178 % oy 0- 0 [ dUe “h
qstag - PI_2/3 (oe* ueh) ds (g ~ hy)
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where the coefficient has been adjusted to produce agreement with Mark 2 andX-17

d
flight test data. The velocity gradient, —d% is given by

0.5

S R oo \?7 o
n P2 P2
For evaluation of convective heating to a non-axisymmetric stagnation

point (as exists for the SLAMAST vehicle) Reshotko has suggested in reference 3.4-4
that the above relationships are applicable if an effective nose radius, Rne is

SR B I NN ff
CIpioyca waulic '
Rnx 0.5] 0.5
1+ an
Rneff N Rnx 2

For the 63-inch long SLAMAST vehicle, as shown in Figure 3, 4-1
RnX = 4,725", an = 0.656" and Rneff = 0,956",

Employing these relations, stagnation heating histories for both the 1° and
10° entry trajectories are shown in Figure 3.4-7. Figure 3.4-8 shows the stagnation
point pressure and enthalpy histories for both 1° and 10° entry cases.

An important consideration in evaluating the heating off the stagnation point
is the determination of whether the flow is laminar or turbulent. Employing the
SLAMAST configuration as an axisymmetric body, laminar and turbulent heat transfer
rates where obtained through use of the "Planetary Aerodynamic Heating Program',
The following equations are used in determining the laminar and turbulent heating.
Local laminar heat transfer is calculated for an axis symmetric cone by the compress-
ible reference enthalpy equations of reference 3.4-5 where

%y % -
y - 0:389 Pt He™ Uk (b, -By)
lam Pr’2/3 S o 10-5
% %k
_[ Pe ue Uer dS

For the turbulent boundary layer a relationship derived by Walker, refer-
ence 3.4-6, which satisfies both the momentum and energy integral equation and in-
cludes the affect of a finite pressure gradient is employed. The solution to these
equations is obtained by use of Blasius incompressible flat plate skin friction coeffi-
cients modified for compressible flow by use of Eckert's reference enthalpy, refer-
ence 3.4-3 and is given by




0.25 * 0.2 * 0.8 0.25
0.0206 Fele Ve (ue /u e) (pe /pe) * (hR - hw)

TURB 2/3 5 0.2
P D‘ 5 U u0.251”1.25ds}
o e e e

Figure 3.4-9 shows (for 1° entry) the ratio of local heating to stagnation heating (at
time of maximum heating) as a function of x/L considering both laminar and turbulent
values. It can be seen from this axisymmetric distribution that turbulence will in-
crease the laminar heating on the skirt by factors ranging from two to three times
the laminar value,

A transition Reynolds number of 150, 000 on the nose and 1, 500, 000 on
the skirt was used, based on analytical studies of reference 3. 4- 8, to be the criteria

" for transition of lammar to turbulent flow. Figure 3.4-10 shows this transition corre-

lation with both the 1° and 10° entry trajectories superimposed. Since local Reynolds
number is a function of both pressure and wetted lengih,

p U S
R _ e e __

€
S ue

transition lines as a function of altitude and Mach number are shown for both a nose and
end point of the SLAMAST vehicle. From this figure it can be seen that both the 1° and
10° entry trajectories will experience laminar flow., Transition to turbulent flow will
occur just prior to chute deployment. In our analysis this occurrence of transition was
neglected since convective flow at this altitude and Mach number is small.

3.4.3 SKIRT HEATING

Local aerodynamic heating predictions for the SLAMAST configuration are
complicated by the elliptical geometry and angle-of-attackmotion. Semi-empirical
methods have been developed for the prediction of laminar heat flux for cones of
elliptical cross-section in references 3. 4-9 and 3, 4-10. From reference 3. 4-9, the
following procedure has been adapted for calculating the local windward, leeward, and
side heating to the elliptical SLAMAST vehicle:

(1) Heating to the SLAMAST vehicle is simulated by heating on axisym-
metric cones of varying half-angles and angles-of-attack.

(2) The zero angle-of-attack caseis first considered. The ellipse at
zero angle-of-attack:
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Since the 90° ray is at a higher angle-of-incidence (with respect to the
free stream) than the 0° ray, the pressure is higher there thus inducing a circum-
ferential velocity gradient. The flow characteristics may be compared to that which
exists for a circular cross-section (cone) vehicle. The boundary layer at ¢ = 90°
is thinned over what the cone would experience there of equal half-angle and thick-
enedat @ = 0°, The result is to increase or decrease the heating depending upon
the peripheral angle.

The heating on a particular ray of the ellipse may be calculated by rep-
resenting the geometry by a circular cone of some half-angle and at some angle-of-
attack. The combination of half-angle and angle-of-attack must be such that the
same incidence angle results as for the ellipse.

These angles may be determined by the following considerations. The
cone pressures at @ = 0°  and 90° are the same as on the ellipse. Py is
unaffected by & . Thus, the cone half-angle for ¢ = 0° heating is 87,

To give the same incidence angle as the ellipse at @ = 0 this requires that
a = 6g-6pie O, + (65-6r) = 05,  This assumes that the effect of cross flow
on the heating to the ellipse is exactly simulated by the cone at angle-of-attack.

At ¢ = 90, the opposite is true. The cone to simulate heating here is
Gc = OS, a = GL- GS,




For the ellipse at angle-of-attack, the approach is to obtain the ratio,
h/h,, for a circular cone at the same angle-of-attack as the ellipse. The cone half-

angle for windward ray heating is 95. The 90° ray is assumed to be unaffected by
the angle-of-attack.

Then, for the SLAMAST;

8 = ¢°
S

- (o]

GL 9

osa = 20°

SLAMAST heating at zero angle-of-attack is given by an equivalent cone

with:
o = ¢ 8 =9, o= -3
c
¢ = 900 6 = 60’ o = 30
c

For instance, to the windward or leeward rays
hj¢’ o heat transfer coefficient where j=E, C, SpP
E ~elliptical cross-section body (SLAMAST)
C ~circular
SP ~stagnation point
@ ~ cone half-angle
o ~ angle-of-attack

The desired quantity is h

E
_ hES,a hEG,O h@, -3 hCQ,r)
hee. o T\% h h h hsp
’ E6,0 Cy -3 Cg 0 SP
hes o Cé, o
—— = —
hEG,O hcs,o
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Therefore, the ratio of convective heat transfer coefficient on the
SLAMAST at angle-of-attack over the zero angle-of-attack case is the same as for
a cone

E

_E6, 0 . 1.0 a conclusion from reference 3. 4-9
C9,-3

hC9 -3

Tl——-'—- = evaluated from references 3.4-9 and 3. 4-10
c9, 0

h
CY, v .

N calculated with program of reference 3. 4-1

SP
In a similar manner, the heating to the side ray is given by

h
. _[ ‘E9,@ Bpg 0 (hce,+3 (hcgo) n
E9, h h h h SP

E9,0 C6,+3 Cs,0 SP

FEg,q

29 = 1,0 i.e., the heating to the side ray of the SLAMAST
E9, 0 vehicle is independent of angle-of-attack

hE 9

=20 _ 310 aconclusion from reference 3.4-9

h
C6,+3
C6,+3

— evaluated from reference 3.4-9 and 3. 4-10
C6,0

h 6.0

—;—‘— calculated with program of reference 3.4-1

Sp

Employing the above techniques, local laminar convective heat flux dis-
tribution have been generated for a range of applicable free stream Mach numbers,

and angles-of-attack for both the windward, leeward, and sideward vehicle meridians.

These distributions are presented in Figures 3,4-11, 3,4-12, and 3. 4-13.

Combining the local heat flux distribution and the stagnation heating his-
tory, local heat flux histories for both the windward, leeward, and side meridians
have been generated. Thesehistoriesare presented in Figures 3. 4-14, 3.4-15 and
3.4-16. Note that the generic shape of the sideward ray heat flux history is similar
to the stagnation point heat flux history, while the windward and leeward rays have




similar generic shapes. This is due to the stagnation point and side ray being rela-
tively uneffected by the angle-of-attack history, whereas the windward and leeward
rays are strongly effected by the angle-of-attack history.

3.4.4 PITCH FLAP AND DRAG BRAKE HEATING

Aerodynamic heating to both the pitch flap and drag brake was calculated
using basically the same techniques employed in the skirt heating analysis.

3.4.4.1 Pitch flap, - The pitch flap is on the leeward meridian and located at the
end of the vehicle., Local laminar heating rates for the leeward ray were modified to
account for the maximum pressure change, Based upon the data of references
3.4-11 and 3. 4-12, there will be regions of separated and attached flow (see sketch)
when there is a large flap deflection.

STATIC
PRESSURE o)

7 7 77 77 7 77 7 77T

Reference 3.4-12, which is an analytical correlation for turbulent heat
flux to flaps indicates a factor of three should be applied to the local heating at the
reattachment point. A factor of five times the local laminar heating was employed
for our particular pitch flap analysis where:

(1) The flow is laminar to just after drag brake deployment.
(2) The elliptical geometry will cause some interaction effects.
(3) There is not currently available any applicable correlation or test data,

3.4.4.2 Drag brake, -The drag brake is located on the windward meridian towards
the end of the vehicle. It is used only in terminating the glide trajectory in a shorter
time interval, When the drag brake is employed the same procedure used in calcula-
ting the pitch flap heating is applied to the drag brake calculations,

Figure 3. 4-17 shows the heat flux histories for both the pitch flap and drag
brake. Note at the time of dragbrake deployment, the heating to both the pitch flap
and drag brake is similar since there is no longer a windward or leeward meridian,
that is, the angle-of-attack (a) - 0,

15~ ot 1 %209
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3.4.5 NOSE CAP, SKIRT, PITCH FLAP, AND DRAG BRAKE SHEAR STRESS

Aerodynamic shear stress histories for the nose cap, skirt, pitch flap,
and drag brake are shown in Figures 3.4-18, 3,4-19, 3.4-20, and 3.4-21. The x/L
and meridian location of these histories correspond to the heating rate histories.
The following relationship was used in the shear stress calculation

0. 667 a
Shear Stress (T ) = 933) x U < __
g e hr - hw

The maximum shear stress calculated does not exceed 7 lbs/ft2 oun the
nase ean. pitch flan. or drag brake; and on the skirt the maximum value does not
exceed 3 lbs/ftz.

3.4.6 THERMAL DESIGN RESULTS

The heat transfer rates calculated in paragraphs 3. 4. 2 and 3. 4. 3 for the
1° entry trajectory were employed in the one dimensional Reaction Kinetics Ablation
Program (REKAP), reference 3.4-13, to analyze the temperature and degradation
response of typical materials for use in a SLAMAST vehicle design.

The REKAP program solves the charring ablator transient heat conduction
problems by solving simultaneously the governing differential equation and the surface
and backface boundary conditions.

These are:

. I L
et % " %%gr - %R T YBLOCK

; —0€T 4
9RR Tw
M 1/3 o
4 = 4. |0.69 AR -
LAMINAR C = p 1/3
BLOCKING GAS R
C
. _ L. ,-0.38 Paas
49ryrBULENT 94cC C o
BLOCKING PaL
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0 dc
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The shield structure composites which were analyzed with the REKAP
program are shown in Table 3.4.1.

The analytical results, that is, temperature and degradation histories,
temperature profiles, mass addition histories, and shield requirements, obtained
from the REKAP analysis of the above shield structure composites are shown in
Figures 3. 4-22 through 3. 4-52 (see list of illustrations). A brief discussion of these
results where the figures themselves are not self explanatory follows.

3.4.6.1 Nose cap thermal results. - The nose cap design for which thermodynamic

studies were conducted is sketched below,

PHENOLIC RE FRASIL

ATJ GRAPHITE

STATION 0 12"

5”

|
|
: TUNGSTEN

DEPOSITED

PYROLYTIC TUNGSTEN -
GRAPHITE RHENIUM

COATED BOLT
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TABLE 3.4-1. - SHIELD STRUCTURE COMPOSITES ANALYZED

ATJ GRAPHITE REKAP MODEL REFERENCES
3.4-14 AND 3.4-15 SEE TABLES 3.4-2 AND
3.4-3 INPUTS

PHENOLIC REFRASIL REKAP MODEL
REFERENCE 3.4-16 SEE TABLES 3.4-2 AND
3.4-3 INPUTS

(1) NOSE CAP
AIR GAP
/ TUNGSTEN
i BOLT
qC—-> ATJ
GRAPHITE {
PYROLYTIC GR’h’H'ITE
RADIATION SHIELD
TUNGSTEN
. __ |pHENOLIC 17 saviast
9c REFRASIL
(2) SKIRT
ALUMINUM
q ESM
C 1004 AP
e 2 e ath A
~ ESM
9c—"1| 1004 AP
bAAAAS” N, PUrS WY Vs
N _J/
~N
FIBERGLAS HONEYCOMB
4 ._e| PURPLE
C BLEND
S Pt Ve

—_———

FIBERGLAS HONEYCOMB

ESM 1004 AP REKAP MODEL REFERENCE
3.4-17 SEE TABLES 3.4-2 AND 3.4-3 INPUTS

PURPLE BLEND REKAP MODEL REFERENCE
3.4-18 SEE TABLES 3. 4-2 AND 3.4-3 INPUTS

(3)

PITCH FLAP & DIVE BRAKE

BERYLLIUM

E;C — | PHENOLIC

NYLON

PHENOLIC NYLON REKAP MODEL REFERENCE
3.4-19 SEE TABLES 3.4-2 AND 3. 4-3 INPUTS
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Figures 3.4-22 to 3.4.25 show the typical temperature and degradation
histories and temperature profiles for a typical graphite nose tip. Pyrolytic graphite
is deposited behind the ATJ graphite and is used as an insulator to reduce the temp-
erature. Original analyses indicated that without this the bolt would exceed its
maximum allowable temperature (>3000° R) as a result of the high radiation heat
exchange between the ATJ Graphite and the tungsten-rhenium bolt,

In order that the high temperatures in the stagnation region are not con-
ducted directly to the low temperature skirt ablator material; an intermediate nosecap
shield structure of phenolic refrasil material was designed. Figures 3. 4-26 and
3.4-27 show typical phenolic refrasil temperature and degradation results.

For the entire nose cap, note that the shield thicknesses shown are nominal
thicknesses that adequately (thermally) protect the structure. Actual design thick-
nesses would vary depending on the thermal safety margin and the structural stress
analysis results,

Mass addition rates for the entire nose cap are shown in Figure 3.4-28,
The differences in shape between the graphite and refrasil curves is that the graphite
material experiences mass loss only due to oxidation and sublimation where the
phenolic refrasil experiences no surface melting but only in depth phenolic resin
decomposition.

Preliminary structural analysis indicates that a potential problem exists
if the temperature gradient between the stag point and x/L= 0, 0208 is as great as the
2000° R shown., For the feasibility study only a one-dimensional analysis was con-
ducted. However, for the final design a multidimensional analysis would be per-
formed which would take into account the high conductivity of the graphite material,

It is anticipated that this analyses would show that a large temperature gradient along
the nose cap region would not exist,

3.4.6.2 Skirt thermal results. - Skirt shield structure composites were evaluated
for heating rates beginning at an x/1 location of 0. 0208 and proceeding to an x/1 =1, 0
for the windward, leeward, and side meridians. The shield structure combination
analyzed were for both thermal design and experimental simulation,

A summary of the temperature studies made for both the ESM and Purple
Blend shield composites are shown in Figures 3.4-29 and 3,4-30. Figures 3. 4-29 and
3. 4-30 show nominal shield requirements as a function of x/1 and integrated heating
respectively for both materials, Shield requirements are shown for design tempera-
tures of 750" R (300°F) and 1060°R (600° F), It should be noted that these are nominal
shield requirements and that actual design thicknesses would include a 30 percent
safety margin,

These results are for a 1° entry trajectory with chute deployment occur-
ring at time = 900 seconds from 400K feet. Shield requirements for a 10~ entry would
be slightly less.
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3.4.6.2.1 Typical ESM shield structure results: Figures 3.4-31 through 3. 4-38
show 1° entrytemperature and degradation® histories, and temperature profiles for
various locations along the windward, leeward, and side meridians, Figures 3. 4 39
and 3, 4-40 show windward meridian temperature and degradation results for a 10°
entry trajectory. Figure 3.4-41 shows 1° entry total mass addition rates for an ESM
shield structure composite for all meridians. For comparison, the 10° entry mass
addition rate is also shown.

3.4.6.2.2 Typical purple blend shield structure results: Figures 3, 4-42 through

3. 4. 45 show 1° entry temperature and degradation* histories, and temperature pro-
files for an x/1= 1, 0 on the windward and leeward meridians. Figures 3. 4- 46 and

3. 4-47 show windward meridian temperature and degradation results for a 10~ entry
trajectory. Figure 3.4-48 shows 1° entry total mass addition rates for a Purple Blend
shield structure composite Ior ine winaward and leeward meridians, lor comparison,
the 10° entry mass addition rate is also shown.

3.4.6.3 Pitch flap and dragbrake thermal results. - Heating rates calculated in
paragraphs 3.4. 2 and 3, 4. 3 were employed in the calculation of the temperature and
degradation response of the Phenolic Nylon thermal protection material for the pitch
flap and drag brake. Figure 3. 4-49 shows the results of a parametric study present-
ing nominal Phenolic Nylon pitch flap and dragbrake thicknesses as a function of
maximum backface temperature, Note that the actual design thickness would be de-
pendent on both the thermal safety margin and the structural stress analysis,

3.4.6.3.1 Typical phenolic nylon thermal results for pitch flap and drag brake:
Figures 3. 4-50 through 3. 4-53 show typical 1° entry temperature and degradation
histories and temperature profiles for both the pitch flap and drag brake. Figure

3. 4-54 shows the 1° entry total mass addition rates that can be expected for both the
pitch flap and drag brake.

*Char thickness is defined as the depth (from the surface) at which the material
density is equal to 97% of the virgin material density.




3.4.7 INTERNAL ENVIRONMENTAL CONTROL

A preliminary thermal analysis was conducted to determine what methods
of thermal control would be required to maintain the electronic equipment within their
operating temperature limits.

3.4.7.1 Summary. - Two structural temperature response profiles were con-
sidered, a hot structure with a maximum temperature of 1060°R and a cold structure
with a maximum temperature of 760°R. It was found that the electronic components
could be maintained within required limits for either case by the following means:

(1) Control component launch temperature by appropriate ground air
conditioning,

(2) Cover vehicle backface with a low emissivity tape.

(3) Isolate components from the structure by using Textolite or

equivalent mounting brackets and shelves. Insulating washers and bushings are
sufficient for some components.

(4) Use low emissivity coatings on some of the electronic equipment
boxes.

The analysis indicates that insulating washers and bushings between the
equipment packages and vehicle structure are sufficient thermal isolation for the
cold structure cases. Therefore, special low conductivity brackets and shelves are
hot required. This will result in a less sophisticated mounting scheme for this case.

No special thermal control system is required for either design. It
is quite probable that a more detailed analysis of an actual internal configuration
would result in elimination of some of the above requirements for various components.

3.4.7.2 Discussion. - The temperature history of the components during the
flight will depend upon initial launch temperature, backface temperature history,
component power profile, and the thermal resistance between the components and
the vehicle skin.

The electronic components receive heat from two separate sources. Heat
is generated internally by the power supplied to the electronics, and heat is transmitted
from the vehicle skin to the components by conduction, convection and radiation.

Two backface temperature responses as shown on Figure 3.4-55 were
considered. They are typical responses of ESM 1004 AP and NASA 602 Ablator
during a trajectory such as that shown on Figure 1 of Reference 3.4-20. One curve
is based on a heat shield thickness that would result in a maximum design temperature
of 10809R, or a hot structure, and the other a shield thickncss that reaches a m

1EiA TRICKNCss tnat reacnes a maxXimum
of 760°R for a cold structure.

131



132

Without air conditioning, it is expected that a maximum launch temper-
ature of 125°F could occur on the electronic equipment assuming a low solar
absorptivity paint on the outside of the vehicle. With sufficient air conditioning,
which is readily available at the Wallops Island launch site, this lift off temperature
could be reduced to 72°F. The effect of these two extremes were investigated.

The internal heat dissipation histories of the various components is
given on Figure 3.4-55. These were obtained from the power profiles given in
references 3.4-21, 3.4-22, and 3.4-23. They are during flight only and assume
no ground checkout time.

Because of the high backface temperatures encountered during the flight,
it was apparent that the components would have to be mounted in a manner in which
tlies al vunduotiou 110 the vellicie skinl would be ai @ miulinuin, 1T wo meinods
were considered: first, that the components were attached to the vehicle structure
through mounting brackets or shelves made of Textolite or equivalent, with a
resulting conductance from vehicle to component of 0.04 BTU/HR-F or less;
second, that the equipment packages were mounted directly to the structure, whose
temperature equalled that of the skin, by insulating washers and bushings with a
total conductance of 0.40 BTU/HR-CF.

In addition, because of the high skin temperatures, a vehicle backface
with a surface of low emissivity is necessary to reduce the effect of thermal radiation
to the equipment. It was assumed that the backface was covered with a low emissivity
tape with emissivity equal to 0.15. The components were assumed to have a surface
with emissivity equal to 0. 80.

The maximum operating temperature of the electronic equipment is
+1609F. The upper limit of the silver oxide-zinc batteries is +120°F.

Since this is a preliminary analysis preceeding a final design of the
vehicle internals, the analysis was performed on a component by component basis.
With this method each component is considered individually and assumed to be a
single mass alone inside the vehicle. In doing this, the thermal interaction between
components is disregarded, and the view factor from each component to the vehicle
skin is assumed to be equal to unity when considering radiant heat transmission.
Since heat is being transfered from the vehicle to the components, this method of
analysis yields higher component temperatures than will actually occur and is thus
conservative.

Figures 3.4-56 through 3. 4-59 show the various component temperature
histories from launch to splashdown for both hot and cold structure, air conditioned
and not air conditioned. The data composing these figures was calculated as
described above assuming a Textolite mounting structure with backface surface
having an emissivity equal to 0.15 and component emissivities equal to 0.80. These
figures show that for both the hot and cold structure cases investigated, component

launch temperatures will have to be controlled in order to keep some of the components

from exceeding their maximum allowable temperatures during operation. Thus,
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some ground air conditioning will be required. The analysis showed that within the
range of launch temperatures investigated, a shift in initial temperature results in
an equal shift in final temperature. On this basis, the maximum allowable launch
temperature of each component can be found from the figures presented. Thus, the
effect of any ground check out can be considered.

Further study of Figure 3.4-56 shows that two components, the trans-
mitter and signal conditioner, exceed the maximum allowable temperature of 160°F
even if their launch temperature is equal to 72°CF. However, if the cases of these
components are treated with Alodine 1200 or equivalent, resulting in a surface
emissivity of 0. 15 or less, their maximum temperatures will not exceed the allowable
limit. It is also highly probable that the temperatures will remain below 160°F even
without the low emissivity coating when actual view factors are used.

Figures 3. 4-60 and 3. 4-61 show the component temperature profiles
assuming the insulating washer mounting technique. Although this method is less
effective than the Textolite structure in limiting the amount of heat transfer by
conduction, the figures show it to be adequate for many of the components.

3.4.7.3 Recommendations. - Ground air conditioning should be provided to
control component launch temperatures. The vehicle backface should be covered
with a low emissivity coating. The components should be isolated from the structure.
This can be accomplished by using Textolite or equivalent mounting brackets; or,

in some cases as shown by the data, insulating washers and bushings alone would

be sufficient.

3.4.8 MATERIAL SELECTION

3.4.8.1 Introduction. - Microballooned phenolic nylon (MPN) and ESM 1004 P
have been evaluated as the prime thermal protection materials over major portions

of this vehicle. ESM 1004 P has been selected as the prime material for the following
reasons: available property data, thermal performance, thermostructural com-
patibility, available analytical techniques, established manufacturing and quality
control procedures, flight experience, and cost.

Those portions of the vehicle that will be exposed to a peak heat flux
of greater than 100 BTU/ft2 - sec. (e.g., nose, leading edges, flaps, etc.) will be
thermally protected by a material selected from the class of higher density, high
performance shield materials such as graphite, phenolic refrasil, phenolic nylon, etc.

3.4.8.2 Property data. - ESM 1004 P is an unsupported, foamed methyl phenyl
silicone containing low concentrations of aluminum silicate fibers. This material is
completely characterized with existing thermal, mechanical, ablative and environ-
mental property data required for design on both the virgin and char materials
(reference 24 and 25).
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Protective coatings for ESM (a white rutile Titania filled RTV-511
designated PD-147) which seal the foam surface if desired, have been qualified to
air-to-air missile specifications of ten cycles to five minutes exposure at 360°F to
370°F, ten days at 120C0F at 100 percent relative humidity and prelaunch environmental
soak conditions of -65°F and +160°F.

ESM 1004 P did not support fungus growth as per MIL-STD 810, Method
508 and was unaffected by exposure to salt fog, MIL-STD 810, Method 509. There
was no significant effect on tensile properties in the humidity test exposure of
MIL-STD 810, Method 507.

1
'
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i

3.4.8.3 Thermal performance. - A number of independent investigators have
reported that the low density silicones are particularly suited for these design and
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In a study conducted by Langley Research Center (réference 3.4-26),
the following conclusion was made:

"In the 2500-kilowatt jet stream of low oxygen content, the
performance of low-density silicone resin is superior to
that of low-density pehnolic-nylon at heating rates from
80 to 150 BTU/ftz—sec. and at shear stresses near 4.7
1bs/ ftz; however, phenolic-nylon is superior to silicone
resin in a low-oxygen content stream at heating rates
outside this range. "

After a personal communication with the author concerning this conclusion,
Mr. Clark said that although tests were not run at heating rates below 80 BTU/ ft2-sec.,
it was his opinion that the low density silicones would be superior also at heating rates
below this value. This opinion has been further substantiated by the Aerospace
survey (reference 3.4-27) in which they report:

"It is apparent that the charring ablator materials are
more efficient for the high heat flux, short re-entry
times, while the silicone elastomers are more efficient
for the milder heat fluxes and longer re-entry times."

In a study conducted for the Office of Advanced Research and Technology
of NASA, the ablative concept was the lightest weight system for lifting entry vehicles
using allowable backface temperature of 600°F and the low-density silicone elasto-
meric type material was considerably lighter than a material representative of the
class of low density rigid ablators (reference 3. 4-25).

Comments from other investigators include:
"The silicone materials do not recede until the heat

flux exceeds about 90 BTU/ft2—sec. ————— ."(reference
3.4-27)
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"Under the low pressures of these simulated environmental
test conditions, S1hcone materials form a protective melt
layer below 60 BTU/ft2-sec., but not at the higher heat
fluxes. " (reference 3.4-27)

..... it was concluded from these plasma tests that the
silicone elastomer ablation materials are a good choice for
present and future mission requirements for ablative lifting
bodies. This conclusion is based on thermal performance,
insulation efficiency, recession characteristics, cold soak
properties, manufacturing simplicity, materials availability,
reliability for the mission requirement, and process and
quality control procedures. " (reference 3. 4-27)

""Most of the interest to date has been focused on the silicone
polymers, because of their low thermal conductivity, high
thermal efficiency at low to moderate heat fluxes, low temp-
erature properties, elongation of several hundred percent

at failure, oxidative resistance, low density and compatibility
with other structural substrate materials. " (reference 3.4-28)

"In the area of re-entry thermal protection, elastomers are
acquiring new importance. They are suitable for long~time
exposure to the cryogenic temperatures of space and are now
being used in primary heat shields. They minimize the
accumulation of thermal and mechanical stresses in composite
structures by yielding under stress. " (reference 3.4-29)

Significant studies have been conducted on the development, fabrication

and qualification of this class of material. (reference 3. 4- -30) Other studies have
reported:

""The addition of phenyl groups to the basic methyl silicone
elastomer permits attainment of good shield-structural
compatibility on large scale structures down to low orbit
temperatures of -290°F to -300°F. The chemical foaming
processes, both supported and unsupported, permit density
variations between 20 and 80 1b/ ft3 the material provides
highly effective thermal insulation for the long-time re-
entries associated with lifting vehicles. Thermal shield
weight is significantly decreased (by factor of 2.0-2.5) by
allowmg the max1mum structural temperature to go to
600°F rather than 300°F. (reference 3. 4-24)

3.4.8.4 Thermostructural compatibility. - Experiments have been conducted

in a thermal simulator to determine the thermostructural capability of the ESM 1004 P
material bonded to aluminum and laminated phenolic fiberglass for the cold temp-
erature extremes occurnng in orbit. The material has been successfully cycled
between - 300°F and +300°F. The 1004 material has a coefficient of thermal
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expansion approximately that of the metallic structure at temperatures below -180°F
(ductile-brittle transition temperature). Thus, this material provides shield-structure
compatibility at low temperatures as demonstrated by successful large scale tests
down to -300°F. At temperatures above about -70°F, the material has a high
coefficient of expansion compared with the substructure. However, ESM has high
strain capability at these temperatures and no stresses are induced in the system
(reference 3. 4-24).

3.4.8.5 Available analytical techniques. - Measured temperature data for a
number of heat fluxes in several plasmajet tests have been compared with analytical
predictions (reference 3.4-24). The analytical data were obtained by using a
Reaction Kinetics Ablation Program (REKAP) which has been developed for ESM

1004 P. This program computes the temperature distribution within a plastic mate-
ricl undergeing thermal docoimposition.  The vate vl decumposiiion is controiied by
an Arrhenius type of relation obtained from thermogravimetric data. It includes the
effect of density change during the decomposition process. The gases formed by the
decomposition of the gas flow through the char material that is formed are assumed
to be in thermal equilibrium with the char. The reduction in heat transfer caused

by mass injection into the boundary layer is evaluated by semi-empirical relations
derived from experimental data. The surface recession or char removal mechanisms
included in the program are those of oxidation, sublimation, melting, and vaporization.

3.4.8.6 Manufacturing and quality control procedures

3.4.8.6.1 Manufacturing experience: ESM sheet stock and molded parts are
fabricated as standard production items. Their manufacture and bonding are controlled
by material, processing, and quality control specifications including complete in-
process inspection. In addition to fabrication and application to the leading edge,
ventral fin, and speed brakes for flight test on the X-15, an ESM thermal shield has
been fabricated in sheet and molded sections for a full scale re-entry satellite vehicle.

The spray application of ESM was demonstrated in the field by coating the
ventral fin and lower speed brakes on X-15-1 on September 3, 1965. Solid propellant
rocket cases have also been coated with spray ESM both in-house and in the field.

3.4.8.6.2 Quality control: All raw materials are qualified through extensive
acceptance testing. Since the shield is fabricated before bonding, ablation, mechanical
and thermal acceptance tests are made on the shield material before application for
total quality assurance. Material, engineering, quality control and manufacturing
specifications have been issued and are official documents controlling the fabrication
of ESM (reference 3.4-32). The material has been fabricated and qualified in the
production operation.

3.4.8.17 Flight experience. - In addition to the X-15, ESM has been flown on the

aft covers of the AMDT vehicle and two current classified programs. Two modifications
designed for higher flux and shear conditions have also been applied and flown on the

aft portion of the skirt of the STV (TVX-PRESS) vehicle. It is currently being
fabricated as the thermal protection for the aft shield of an operational satellite

re-entry vehicle.
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3.4.8.8 Cost. ~ It is estimated that due to the extensive molds and tooling
required for MPN and the manufacturing experience with ESM, the cost of an ESM

heat shield would be approximately one-third of a MPN shield of comparable weight
(reference 3. 4-24),

3.4.8.9 Nose tip materials. - The SLAMAST nose tip design involves the use of
several materials:

(1) a structural graphite (ATJ) nose tip and threaded insert,
(2) a tungsten-rhenium retaining nut and bolt,
(3) pyrolytic graphite insulating washers, and

(4) a boron-alloyed pyrolytic graphite (BPG) lining for the inside of
the nose tip.

The PG washers are available commercially from several vendors and
present no problems. This report outlines the present state-of-the-art for the other
materials involved and estimates the amount of development effort, if any, that
would be required prior to their successful fabrication.

3.4.8.9.1 Graphite nose tip technology: Graphite base materials have great
potential for use on slender, small nose radius vehicles of the TVX, RMV-A and
SLAMAST type. This form of carbon has high thermal shock resistance, good high
temperature strength, excellent machinability, high thermal conductivity, a high
sublimation temperature, and a relatively low oxidation rate. The available
manufactured graphites are not one specific material, but a family of materials
which are essentially pure carbon. They differ from each other from the stand-
point of degree of preferred orientation of the crystallites, the grain and/or
crystallite size, the density, the size and number of pores or voids, the degree of
graphitization and the level of impurities. Thus, a wide variation can be produced
in the physical and chemical properties of graphites, depending upon the choice of

starting materials and the conditions used in processing the graphites during the
manufacturing cycle.

Excellent review of many aspects of graphite technology exist both in
the trade and published literature. Examples are (a) the graphite handbook published
by the National Carbon Company, (b) Proceedings of the 7 Carbon Conferences
sponsored by the American Carbon Committee and the R and T Division of the Air
Force Systems Command, and (c) a book by Ubbelohde and Lewis.

The Re-entry Systems Department has shown through flight test of
vehicles such as TVX and RMV-A that manufactured graphites such as the National
Carbon Company's ATJ grade of graphite can be used satisfactorily for nose tips on

amall nnaa wadina vrahinlac
slender, small nose radius vchicles.
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Synthetic or manufactured graphites are, in general, made by the same
basic process. Graphite is formed in bulk by heating organic cokes at high tempera-
tures in the absence of air. This material is subsequently mixed with coal tar pitch
and the mixture is consolidated, shaped, and heated. Processing details vary with
individual producers, but the basic operations described are standard throughout the
industry. To obtain graphite of highest purity, the bars are heated in an atmosphere
containing gases such as chlorine and fluorine, This removes impurities including
the rare earths, vanadium and boron and, if carried out properly, is reported to re-
duce the total ash content to values under 20 parts per million. *

ATJ Graphite is covered by General Electric Specification NCS3146B.
The specification requirements for this material are:

Dulk Deusily 1.75 gm/'cm3 mimmum
Compressive Strength (RT)

With Grain 7300 psi

Against Grain 7300 psi

Tensile Strength

With Grain 2900 psi

Against Grain 2900 psi
Purity

Type I Ash 150 ppm

Radiographic Requirements

Density Uniform
Voids, Cracks, Inclusions None
Grain Size . 007 maximum

Specific Resistance "
With Grain 13.6 x 10_4 ohm/cm
Against Grain 17.0x 10 ~ ohm/cm

For the SLAMAST program ATJ graphite appears best suited to meet the
program requirements. The material will withstand the extended heating rate for
the long re-entry times involved. There is no thermal shock or serious application
problem with this material and the oxidation resistance of commercial available ATJ
appears adequate. If further oxidation resistance is required the material can be
purified which will enhance its oxidation resistance or a silicon carbide coating could
be applied.

* The standard procedure in the carbon industry is to measure impurity content on the

basis of residual ash from a known weight of combusted sample.




.

3.4.8.9.2 Pyrolytic graphite insulative lining: The SLAMAST nose tip, constructed
of ATJ graphite, has an internal cavity to accommodate the head of the tungsten-
rhenium retaining bolt. To provide thermal insulation protection for this bolt head, it
has been proposed that this cavity be lined with boron-alloyed pyrolytic graphite (BPG).

The deposition of BPG on the inside surfaces of ATJ graphite nose tips has
been successfully accomplished on numerous occasions on study contracts currently
being conducted at the General Electric Co. No major problems are expected so long
as the ATJ/BPG thickness ratio (radially) is 2.0 or more. When the thickness to
radius (t/r) ratio of deposited BPG exceeds 0. 06, tight delaminations are likely to
appear in the BPG. However, when present they will not cause any problems since the
BPG lining is not a structural member. In fact, by creating additional interfaces in
the material, they enhance the thermal insulation properties of the BPG lining material.

After deposition of the BPG lining, machining would be required to remove
the BPG from surfaces where it is not desired. At this time female threads would be
machined to accommodate the threaded ATJ insert.

In summary, the BPG lining concept appears to be applicable to the
y g pt app PP
SILLAMAST program without extensive dnvn]nnman QOne or two develonment runs
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might be needed to establish process parameters such as nozzle position, length of
run, and deposition temperature. However, no difficulties are expected if the lining
thickness ratio and the thickness to radius ratio previously mentioned are not exceeded.
The thermal insulative properties of the BPG will maintain the temperature.. The
tungsten rhenium bolt will ""see" below the critical temperature of the alloy.

3.4.8.9.3 Tungsten rhenium nose bolt material: The bolt temperature during re-entry
will rise into the 3000° F range. The primary requiremement for the bolt material is
the maximum margin of safety on strength at 3000° F. However, the bolt must also
have adequate ductility at ambient temperatures to withstand machining without serious
surface damage, assembly and handling loads, and powered flight vibration.

Several materials, all refractory metal alloys, have been considered for
nose bolt applications, for example:

Tungsten - 25% Rhenium

Tantalum - 10% Tungsten

Tungsten - 2% Molybdenum

T 222 Tantalum Alloy

Compared with Tungsten-25% Rhenium, Tantalum-10Y% Tungsten is weaker
above 3000° F, Tungsten-2% Molybdenum has no ductility below 250°C, and T22 has

usuable properties to 3500°F but poses a serious availability probiem. 'I'ne most ad-
vantageous combination of high temperature streng‘th ambient temperature ductility,
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Tungsten-25% Rhenium produced by powder metallurgical methods. Mechanical
properties of @-25 Re as determined by several laboratories are as follows:

Temp °F Ult. Tensile (psi)
R.T. 177, 000
3000 30, 000
4000 11,000
4500 5, 000

Although tungsten alloys oxidize rapidly at temperatures in the 4000°F
area, oxidation is not a consideration in this application because of the low oxygen
partial pressures that can exist within the graphite nose tip assembly.

3.4.9 SYMBOLS AND SUBSCRIPTS
Symbols
\Y% Velocity Ft/sec.
C Specific heat at constant pressure BTU/1b'R
hP Enthalpy or altitude BTU/1b or ft
H ¢ Heat of gas formation BTU/1b
HI'(’; Heat of cracking BTU/1b .
k Thermal conductivity BTU/ft-sec R
M, Mach number 2
m Mass loss rate Ib/ft" ~-sec
-n Reaction order 9
P Pressure 1b/ft
q Heat transfer rate BTU/ft -sec
R Universal gas constant BTU/1b mole "R
RN Nose radius feet
T Local vehicle radius, normal to roll axis feet
s Surface wetted length, from stagnation point feet
s Boundary layer gas-char interface velocity ft/sec
t Time seconds
T Temperature R
w Weight pounds
p Density 1bs/ft 3
Y Flight path angle degrees
K Gas viscosity Ib-sec/ft
M Molecular weight Lb,,,/Mole
E Emissivity _12 9
a Stephan-Boltzmann Constant (0.476x10 =~ BTU/sec-ft )
Re Reynolds number
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Subscripts

Mass transfer effect

Edge of boundary layer conditions

Char, also aerodynamic convective heating rate
Decomposition gas

Laminar flow conditions

Uncharred or virgin state

Recovery conditions

Surface or wall conditions

Distance from dividing stream line feet
Turbulent flow condition

Re-radiation

Hot gas radiation

Free-stream conditions
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3.5 INSTRUMENTATION AND COMMUNICATION STUDIES

3.5.1 PLASMA ATTENUATION

3.5.1.1 Summary and conclusions. - A plasma attenuation study to establish re-
corder and playback requirements has been performed for the SLAMAST 1° design tra-
jectory for both telemetry and tracking frequencies. Results are presented in Figures
3.5-1 and 3.5-2. These results (upper bound curves) are felt to be conservative for
the following reasons:

(1) The design trajectory used in this analysis constitutes a worst case,
whereas the actual flight trajectory will be less severe

(2) The two dimensional flow analyses used gives results which are conserva-
tive for an asymmetric vehicle.

(3) The results ignore the strong exponential dependence of reaction rates

and contaminant ionization on flow field temperature, and thus on velocity (as explained
below).

This analysis has led to the following conclusions:

(1) S-band blackout will begin (based upon a 20 db margin) at approximately
235K feet and end sometime during the horizontal portion of the flight.

(2) The duration of S-band blackout will be no more than 405 seconds.

(3) C-band blackout (based upon 20 db margin) will begin at approximately
225K feet and end before the end of S-band blackout (during horizontal flight).

(4) The duration of C-band blackout will be no more than 325 seconds.

3.5.1.2 Discussion. - A major assumption made in this analysis was that of two
dimensional flow. This simplification was necessary because three dimensional flow
field techniques are not available to handle the asymmetric configuration of the re-
entry vehicle. Results of this analysis of a two dimensional blunted wedge (flat plate

at angle of attack) should provide conservative attenuation predictions with respect
to the actual case.

The primary tool used in this analysis is the Equilibrium Chemistry Con-
taminated Boundary Layer and Inviscid Flow Computer Program which is coupled with
the Plane - Wave Electromagnetic Transmission analysis to give plasma attenuation.
(refs. 3.5-1, 3.5-2, 3.5-3, and 3.9-4). Necessary input parameters for this program
include nose radius, cone angle, antenna location, signal frequency, altitude, velocity,
angle-of-attack, surface temperature, mass loss rates, and contaminant levels. The
program has options for both two dimensional and axially symmetric flow and uses the
method of characteristics to calculate the flow properties and then performs an exact
integration of Maxwell's equations with the assumption of plane wave geometry and
normal incidence to give attenuation. The program has the ability to handle three
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classes of cases; inviscid flow only, a combination of inviscid flow plus a pure air
boundary layer, or a boundary layer only, with or without contaminants.

This equilibrium program was run using a velocity-altitude profile for
the design trajectory corresponding to an entry angle of 1°. This trajectory was
chosen for the detailed analysis since it is expected to constitute a worse case. The
angle of attack at each point of interest was added to the side view angle to give an
effective wedge angle at each point. The nose radius used was 0. 655 inch and the
axial station studied was 48 inches from the nose on the bottom centerline. The in-
viscid alone and the pure air plus inviscid subroutines both show the effect of nose
bluntness on electron production and subsequent plasma attenuation. This production
should dominate at high altitudes where heat shield ablation and resulting boundary
layer contamination is at a minimum. At lower altitudes, the dominant electron pro-
ducing mechanism is contaminant ionization and, therefore, the attenuation predicted
by the contaminated boundary layer sub-routine should be used. However, results of
this option were not used for reasons discussed below.

The equilibrium chemistry assumption leads to results which do not always
compare well with actual flight data due to the fact that non-equilibrium chemistry ef-
fects are important in the altitude range of interest. A non-equilibrium stream-tube
analysis for bluntness ionization has thus been performed for the purpose of checking
the accuracy of the results provided by the equilibrium program. This analysis involves
a system of three computer programs. The first two of these programs calculate
transonic properties near the nose and supersonic flow field properties along stream-
lines using the method of characteristics. The third program calculates species con-
centration along streamlines. A normal to the body at any chosen station can be

constructed and using results of the stream-tube program f Ne dy and plasma attenuation
can be found.

Results of the non-equilibrium stream-tube analysis compared favorably
with those of the equilibrium inviscid results. Figure 3.5-3 shows electron density
profiles for both equilibrium and non-equilibrium flow at a velocity of 19,026 ft/sec
and an altitude of 141,900 feet at an antenna location of 48 inches from the nose tip.
The area under each curve, which is equal to f Ne dy, is approximately the same
and, thus, equilibrium flow attenuation levels were used for subsequent high altitude
predictions.

At lower altitudes, the non-equilibrium nature of the system does not allow
the metallic contaminants to ionize at the rapid rate assumed by the equilibrium program.
Therefore, the program over-predicts the electron concentration in the flow and, thus,
should not be used at these lower altitudes. The non-equilibrium analysis mentioned
above is not able to handle contaminant ionization. Therefore, the following approach
was used. A classified test program presently under way for the Air Force has resulted
in a set of excellent data on plasma attenuation. Flow field data from this program were
used to obtain temperature in the boundary layer at the altitude-velocity point corres-
ponding to the end of the horizontal portion of the SLAMAST flight trajectory. The
temperature at that point from the SLAMAST equilibrium calculations was then scaled
to a non-equilibrium value using a scaling law derived from the non-equilibrium
stream-tube analysis. These two temperatures; the flight data results
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SLAMAST equilibrium value scaled for non-equilibrium effects, were used to obtain
reaction rates based on kinetic coefficients recommended by Bortner (ref. 3. 5-5).

The reaction rates thus obtained were then compared and it was found that the SLAMAST
calculated reaction rates were several orders of magnitude lower than those obtained
from the flight data. Since the flight data were contaminant dominated (nose bluntness
effects are negligible in the region of interest), and the attenuation was on the order of
16 to 20 db the conclusion was reached that the attenuation for the SLAMAST case at that
trajectory point would be negligible.

The same analysis was applied to a point somewhat earlier on the horizontal
portion of the SLAMAST trajectory. Results showed that the reaction rates were no
longer orders of magnitude apart. It was thus concluded that the attenuation would not be
negligible at this point. Fixing the value of the attenuation at this point, however, proved
to be extremely difficult due to the inaccuracies involved. Thus an upper bound pre-
diction was obtained by interpolating linearly between the point of negligible attenuation
at the end of the horizontal flight path, and the peak value obtained by the inviscid
analysis at an altitude just prior to the initiation of horizontal flight. This prediction
constitutes an upper bound due to the fact that the reaction rates are a strong exponential
function of temperature and thus of the trajectory. The actual case (for both S and
C-bands) would thus show attenuation dropping rapidly from the peak value which occurs

3 n E_O nwmd Tavenlliw~ ~FF
at about 185 seconds from entry at 400K feet (Figures 3.5-1 and 3. 5-2) and leveling off

to the zero value at about 700 seconds in the case of S-band frequency (Figure 3.5-1)
and about 630 seconds in the case of the C-band frequency (Figure 3.5-2). The lower
bound on the two figures is just the inviscid flow prediction, which excludes contaminant
effects, and thus does not represent a realistic case.

3.5.2 T/M AND INSTRUMENTATION SYSTEM SELECTION

In order to select an information retrieval system which will effectively
fulfill the SLAMAST objectives, the following criteria have been identified.

(1) The system shall provide adequate accuracy and time response res-

olution o permit reliable quantitative delineation of the Thermal Structural phenomena
of interest.

(2) The system shall provide sufficient diagnostic information to adequately
interpret the control system functions during the vehicle development phase of operational
testing.

(3) The system shall require a minimum surface support force.

(4) The system shall, if possible, be compatible with both the Eastern
test range and the Apollo Ship data acquisition equipments.

(5) The system shall be configured to provide in-flight data acquisition
to minimize the probability of data loss.
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In meeting these criteria, the following specific factors must be considered:
(1) Shipboard system acquisition capabilities

(2) Communication signal strength margins

(3) Shipboard system tracking rate limitations

(4) Flight path dispersion as it affects shipboard system coverage

(5) Structural temperature flight profile

(6) Accuracy capability of digital and analog encoding and modulation
techniques (PCM/FM versus PDM/FM and PAM/FM)

(7) Data degradation in storage

(8) Reliability and packaging efficiency

Consistent with these criteria and design considerations, the following
information retrieval configuration has been selected for the SLAMAST feasibility

study. (Criteria is discussed further under the trade-offs section.)

(1) PCM/FM Telemetry with digital on-board data handling (eight bit
sample encoding)

(2) Capability for ground command initiated recorder playback

(3) Non-destructive data playback (data remains on tape) from the on-
board recorder with no provision for simultaneous record and playback

(4) Programmed playback of the on-board recorder during the retardation
sequence as backup

(5) Continuous real-time telemetry at a power level of two watts except
during recorder playback. During playback, the recorder and real-time information

shall be mixed and transmitted at a two watt level.

(6) Utilization of the predetection recording capability of the shipboard
systems.

(7) Incorporation of a C-band transponder and command receiver.
This system configuration provides the following advantages:
(1) Experiment data can be recovered in four fashions:

(a) Data playback during the terminal portion of the experiment

period. (If tracking acquisition is not obtained by the shipboard system, the record
mode continues.)




(b) Real time acquisition, ship availability and plasma attenuation
permitting.

(c) Playback acquisition during the retardation sequence.
(d) Recovery of the on-board tape.

(2) Utilization of minimum surface support forces as desired (convenient
transition to minimum support forces as vehicle performance confidence is obtained)

(3) Diagnostic information recoverable from the entire flight

(4) Digital encoding and data handling provides an excellent data accuracy
capability.

(5) Digital recording preserves data accuracy durihg the on-board record
cycle (see trade-off discussion, paragraph 3. 5¢3).

3.5.3 TRADE-OFFS
3.5.3.1 Digital versus analog data handling. - The primary rcason for sclection

of a digital on-board system is to obtain high quality accurate information retrieval.

A typical measurement list is illustrated in Table 3.5-1. This list specifies the
desired accuracy to be obtained end to end (exclusive of the sensor), for each measure-
ment. The highest accuracy requirements listed are for the control system diagnostic
measurements. However, flight dynamics measurements to 1 percent are indicated and
thermo structural measurements to 3 percent are desired. In addition, it is felt that
for a research program, the greatest achievable accuracy is desirable.

End to end accuracies obtainable with analog systems (PAM/FM & PDM/FM)
deteriorate to 5 percent 3¢ or greater at received signal to noise ratios of 9 db. Figure
3.5-4 illustrates the accuracy-signal/noise ratio relationship for a typical PAM/FM
system. The incorporation of an on-board recorder further deteriorates attainable
accuracy by about 2 percent 3¢ for typical recorders used in analog fashion.

A factor of significance when comparing analog and digital data handling
is data confidence. This factor is of concern for the SLAMAST application. Accuracies
quoted in the customary manner for analog systems are attainable accuracies for 3¢
confidence. However, during post flight data analysis, the accuracy achieved is not
known quantitatively. Only a statistical bound is known and this bound is a function of
signal to noise ratio (as was illustrated in Figure 3. 5-4). This disadvantage is parti-
cularly acute when attempting to establish the magnitude of short term parameter
fluctuations, for in this case, data smoothing is not appropriate.

The use of running scale references while effectively correcting for drift
due to system gain changes does not reduce the error due to signal/noise content. In
fact, since the reference sampies are no iess noisy than the data samples, the scaling
operation during data reduction adds to the statistical variance of the measurement.
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In summary, the accuracy and data confidence desired are not obtainable
with an analog system for the signal levels expected in the SLAMAST application.

In contrast, the utilization of a Pulse Code Modulation system with digital
on-board data handling can provide very accurate (1 part in 256 plus sensor error)
information. In addition for signal levels sufficiently above threshold (which is deter-
minable from the observed bit error rate) the accuracy is adequately bounded and data
confidence is obtained.

For these reasons, a PCM telemetry system used in conjunction with digital
on-board recording is considered superior for the SLAMAST application. It should be
noted that the cost trade-off is no longer unfavorable for digital systems and when pro-
cessing costs are included the trade-off is favorable.

3.5.3.2 Tracking system requirements. - A knowledge of the altitude-velocity
profile is essential to interpreting the S/C function since the experiment environment

is in part, a function of the trajectory. The on-board controller is designed to provide
a desired altitude profile. The controller parameters and the S/C dynamics will be
monitored by telemetry, enabling a reconstruction of the trajectory from the on-board
measurements. However, in order, to correlate and establish tolerances for the
derived trajectory, it is required to provide a surface tracking capability. Radar track
information is also necessary for recovery. It is also desirable to obtain diagnostic
information in the event of an unsuccessful flight. This is especially pertinent during
the pullup maneuver.

Thus, the S/C tracking requirement is identified as coverage during pullup
maneuver, during the terminal portion of the experiment period, and during retardation.
Continuous coverage is not considered necessary as the on-board information will pro-
vide adequate extrapolation between surface coverage periods.

Exospheric coverage can be obtained from the radar installation on Bermuda.
However, the pullup maneuver will be completed beyond the Bermuda useful horizon and
look angle. Therefore, a nominal surface ship configuration should consist of one
tracking ship positioned to cover pullup and the early experiment period and a second
ship positioned to cover the terminal experiment period and the early retardation
sequence. (Ship placement is discussed under separate heading.)

3.5.3.3 Trajectory reconstruction. -

3.5.3.3.1 Introduction: The Data Acquisition and Coverage presently planned for the
SLAMAST Flight Test Program will consist of two ships with metric radar data measure-
ment, one shiplocated to track the spacecraft during the re~entry maneuver south-

west of Bermuda, and the second ship strategically placed at the retardation location

to record metric radar and playback/real time telemetry data.

The reconstruction of the experiment phase of the trajectory from two

radar locations in conjunction with spacecraft telemetry data presents a problem of
which GE-RSD has available techniques for Ballistic Re-entry Trajectories.
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The identification and proposed methods of extending these techniques to
lifting re-entry vehicles is discussed in the following sections.

3.5.3.3.2 Present techniques for optimizing ballistic radar trajectories: At the
present time, within GE-RSD a technique is available for determining the optimum
initial conditions to use for 'fitting" a point mass trajectory from selected metric
radar data. The resulting trajectory provides a least squares fit to selected radar
measurements of spacecraft position prior to and during re-entry. This technique
has been utilized for the on board data analysis of 6 RMV program flight tests, with
very satisfactory results and provides metric data in periods where there was no
radar coverage.

The trajectory processing is conducted in five basic steps which are
described below.

3.5.3.3.3 Smoothing, refraction correction and coordinate conversion: The measured
range, azimuth, and elevation may be smoothed, if desired, by a digital filter which
spans one second of data (at 100 samples/second) and has a cutoff frequency of 2.6
cycles/second.

The corrections for atmospheric refractions are applied to range and
elevation and are calculated by a ray tracing technique which assumes constant
refractivity through layers of the atmosphere. Values of refractivity are derived
from measured atmospheric data if available. Otherwise, an exponential model
atmosphere is used to compute refractivity.

Smoothed and refraction corrected range, azimuth, and elevation are
converted to inertial geocentric coordinates (XYZ) for use in fitting the optimum
trajectory.

3.5.3.3.4 Fitting: For a given vehicle drag model or measured deceleration history,
a point mass trajectory through re-entry is completely specified by knowledge of
vehicle position and velocity at some initial time. To determine the optimum initial
conditions, approximate re-entry, vehicle position and velocity, determined from

high altitude radar data, are used as initial conditions for calculation of a preliminary
point mass trajectory. The differences between this first estimate of trajectory and
the radar measured values are combined with partial derivatives obtained from pertur-
bations of the first estimate of trajectory to yield revised initial position and velocity.
Tterations of this process continue until initial conditions are determined which yield
the trajectory which best fits the radar data.

The criterion for best fit is the minimization of the weighted sum of the
squares of the distance between the computed positions and the radar measured positions.

Measured atmospheric quantities plus theoretical models of the earth and
of vehicle mass, area and drag are used for the re-entry portion of the trajectory
calculation.




3.5.3.3.5 Trajectory comparison: The fitted trajectory is evaluated by comparison
of vehicle position as measured by the radar and the position determined from the
fitted trajectory. Radar measured position is converted to geodetic coordinates and
calculated position is converted to radar coordinates. Differences are expressed in
terms of altitude, geodetic latitude, longitude, radar range, azimuth, and elevation.
Means and standard deviations of the differences are calculated and the differences
are plotted.

For several of these flights, comparison of the fitted trajectory and the
radar data indicated an excellent high altitude fit, with divergence at lower altitudes
which were evidently caused by inaccuracies in the drag model.

After processing of spacecraft motion data (accelerations and angular
rates), a drag deceleration history was obtained from the telemetry data. Values
selected from this unsmoothed drag history were substituted for the model and a new
trajectory was fitted to the radar data. In general, this trajectory resulted in a signifi-
cant decrease in the divergence which was previously observed.

3.5.3.3.6 Proposed trajectory reconstruction method for SLAMAST vehicle: The
trajectory fitting technique described in the previous section will be the method used

i i 1 3€3 0 tentioma I T e T
for trajectory reconstruction with the modifications discussed below. The current

technique includes the equations of motion for determining the re-entry trajectory
based on a ballistic re-entry, considering only the drag component of force. The
equations of motion in this program can be modified to include the 1lift and yaw com-
ponents of force. The lift and drag accelerations are functions of the pitch angle of
attack during the experiment phase of the trajectory.

To apply this technique, the trajectory is considered to have three phases:
Re-entry, experiment, and recovery. It is required that metric radar data be available
for re-entry and recovery with telemetry data (accelerations and attitude) being avail-
able for the entire flight. Using the smoothed radar metric data for the initial conditions,
an initial trajectory from high altitude re-entry through low altitude impact will be
determined by fitting directly to radar metric data, and using yaw, normal and axial
accelerations time histories and inertial attitude data.

The residuals remaining from this initial fit will be examined. If required,
a second iteration on the trajectory will be determined based on perturbations induced
into the lift and drag acceleration time histories. This iteration will continue until a
specified degree of fit is obtained with measured recovery data. An error analysis
based on sources of error and magnitude (Radar, telemetry measurements) will be
conducted prior to actual use of the data for trajectory reconstruction.

3.5.3.4 Apollo ship capability*. - The Apollo project ships are configured to pro-
vide both S-band and C-band metric data. The plasma attenuation consideration is
discussed under separate heading and indicates the desirability of utilizing the C-band

*Mission Support Capabilities - Apollo Instrumentation Ships
1 June 1966 - Apollo Instrumentation Ships Program Office

General Dynamics Electronics Corp.
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capability. The use of C-band is compatible with the ARIS ship configuration* and
enables interchangeability. In addition, the C-band link provides a convenient means
of accomplishing surface initiated commands. The use of unified S~-band commands
would necessitate a complex on-board configuration and would not be compatible with
the ARIS ship configuration.

The Apollo ship is configured to receive real time trajectory update in-
formation via a HF communication link. This information is then utilized by the
central information processor (UNIVAC 1230 computer) which generates scan com-
mands for the antenna controllers. This capability should be of considerable advantage
to SLAMAST in mitigating the acquisition problem downrange.

3¢5.3.5 On-Board transponder requirement. - A C-band transponder has been
selected for the SLAMAST S/C configuration. This transponder is desirable to ex-
tend the accurate tracking capability of the FPS/16 radar to 200 nautical miles and
provide a reliable acquisition sequence.

The published FPS/16 range capability (see reference 3.5-6) for a . 11\/12
target in skin track mode is 43 nautical miles. This is the maximum distance for
which a 12 db S/N ratio can be maintained, which is the ratio required for accurate
track and secure lock. At 200 n. mi., the S/Nfor a .1 M2 target is down to -14 db
which is inadequate for maintaining track. The use of an on-board transponder with
a pulse power of 500 watts and a receiver sensitivity of -70 db extends the range
considerably and yields a S/N ratio of +45 db at 200 n. mi., neglecting plasma at-
tenuation. This 45 db C-band gain margin provides desirable immunity to plasma
attenuation and should provide a reliable acquisition sequence.

* ARIS orientation manual - RCA Service Co.
Missile Test Project
Patrick Air Force Base, Florida
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3.5.3.6 Measurement requirements, - Table 3.5-1 presents a compilation of
typical measurements for a SLAMAST Spacecraft. Measurement designation 100-300
are primarily thermo structural experiment or related information, whereas diagnostic
control system and other necessary measurements are designated 300 and above.

3.5.3.7 Experimental. - Panel measurements indicated are temperature, strain,
displacement, calorimetric, and vibration., Strain measurements would typically be
obtained by 0-5000 pin/in rosette gages mounted at opposite panel wall locations, near
the panel center and near the edges. The gages mounted on the ablator side of the
panel would be invalid after approximately 600°F is reached but the strain history prior
to loss is of interest, The strain information desired is the static component, Thus,
the sensor output can be low pass filtered, eliminating the vibration components and
permitting adequate sampling at a rate of 5 samples per second.

Displacement characteristics of the panel can be obtained by the installation
of a single displacement monitor located at the center of the panel. A differential
transformer technique is preferred to eliminate mechanical coupling errors,

Vibration information is desirable to complete the knowledge of the panel
environment., Spectral range envelope information is adequate. The filtering require-
ments are rudimentary and implementation will not present a packaging problem. The
envelope waveform can be adequately monitored at a sampling rate of 5 samples per
second yielding dyramic resolution beyond 1 cycle per second.

3.5.3.8 Diagnostic measurements. - The diagnostic measurements provide
functional information relative to on board system performance and the spacecraft
dynamics. Standard measurement techniques are appropriate for the majority of the
information, A typical measurement configuration is indicated in the measurement
list. S/C body pressures and shield temperatures in depth are provided in order to
establish physical design tolerances and to provide substrate panel environment infor-
mation, A set of accelerometers-(meas # 27-29) are incorporated at a location well
forward of the S/C center of gravity. These units should be of the high quality force
balance type construction for accuracy and rejection of cross coupling components.
The +10 g ranges indicated prevent saturation over the range of the slowly varying
linear acceleration components expected. The dynamic components generated by S/C
rotational moments are obtained by high pass filtering of the sensor outputs. These
waveforms (meas # 30-32) are then conditioned to provide %1 g full scale. The infor-
mation obtained should be valuable in defining the vehicle stability characteristics
and dynamic response. In addition the correlation with the rate gyro information and
dynamic pressure fluctuation provides supporting panel environment data.

3.5.3.9 Ship placement considerations - data acquisition and tracking, - In order
to establish the surface ship support required for SLAMAST, the effects of trajectory
dispersion on the following factors must be considered:

(1) Shipboard system coverage capabiiity inciuding

(a) tracking rate constraints
(b) horizon limitations
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(2) Slant range (gain margin)
(3) S/C antenna pattern

Due to the uncertainty in the location of the trajectory plane, the subsequent
presentation evaluates the above parameters for various cross ranges, at several
points along the trajectory. Tracking rates are limited to 10 degrees/second maximum
and elevation angles between 5 degrees and 80 degrees are considered, The trajectory
considered is the -1° re-entry angle design trajectory.

For the downrange S/C recorder playback location, the crossrange capability
of the shipboard system is established as 14 to 160 nautical miles (see following
development and Figure 3.5-5). Thus, a nominal crossrange position of 85 nautical
miles will provide 100 seconds coverage for a crossrange flight path dispersion of
+70 nautical miles.

Plots of S/C pitch and yaw aspect angle components are provided as a
function of ship location. These plots illustrate the S/C antenna pattern requirement
as a function of ship location.

3.5.3.10 Analysis. - Inthe analysis of the ship placement problem, several nominal
downrange positions were chosen and the effect of cross range on elevation angle,
elevation and azimuthal angle rates, and horizon limitations was investigated. The
positions selected for investigation were the 800, 1250, 1700, and 2000 nautical mile
points downrange from 400K feet re-entry. These positions are shown in Figure 3,5-6
together with an indication of the available span of coverage. An elevation angle of

5 degrees was set as a lower limit and 80 degrees as the upper limit, The latter
limitation produced a "blind" spot for 0 crossrange of 3 to 8 seconds depending on the
velocity and altitude and is not shown on the figure.

Due to the constant altitude and similar velocities, it was found that the
results of the 800, 1250, and 1700 n.mi. stations were approximately of the same
magnitude. To avoid unnecessary duplication, only the 1700 n. mi. case is presented
which is representative of the other two positions. However, at the 2000 n, mi. location,
the major portion of the coverage is affected by decreasing altitude and velocity and
is therefore treated separately.

To obtain the variation of horizon limitations for various cross ranges, plots
of slant range versus time were made, For any given cross range, the curve of
slant range is limited by the minimum elevation angle, 5°. The observation time
is the time interval between the end points which can be evaluated against the 100
second link requirement, Figure 3.5-5 illustrates that to maintain the 100 second
time interval at the 1700 n,mi, location, a maximum crossrange of about 160 n. mi.
can be tolerated before data loss becomes unavoidable,

A similar plot for the 2000 n, mi, position is shown in Figure 3,5-7.
Here, the tendency to lose the S/C over the horizon because of decreasing altitude is
compensated by the deceleration so that the communication times are comparable to the
1700 n, mi. case,
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In order to determine the lower limit of cross range, tracking rates and
maximum elevation are considered.

A maximum elevation of 80° imposes a 5 n. mi. minimum for the 1700 n. mi.
position, as illustrated in Figure 3.5-8. A plot of elevation rates, Figure 3.5-9,
indicates a low elevation rate (6° per second) so that the maximum of 10°/sec is not
exceeded at this position. Azimuth rates, however, can become quite high since the
rate is infinite at 0 crossrange when the vehicle is directly overhead. This is shown
in Figure 3.5-10 for the 1700 n. mi. position and the corresponding maximum rates
versus crossrange in Figure 3.5-11. From the latter figure, it is secen that the max-
imum rate of 10°/sec imposes a minimum crossrange of 14 n, mi. and therefore
overrides the minimum of 5 n, mi. imposed by the elevation angle. Shown in Figure
3.5-12 are the azimuth rates for the 2000 n. mi. position where it is seen the minimum
crossrange is determined at 10 n.mi. It should be mentioned that if the shipboard
system is the 3-gimbal type allowing a full 180° overhead rotation, azimuth rates do
not impose any restrictions.

In the event that various flight maneuvers such as pitch, roll, and yaw
are considered necessary for the satisfactory completion of mission requirements,
it is realized that severe penalties may be incurred due to these effects on the
orientation of the S/C antenna pattern. It is desired that the line of sight vector from
the S/C to the rcceiver pass through that portion of the antenna pattern which does
not produce significant transmission losses (null spots). Figures 3.5-13 and 3.5-11
give the time variation of the pitch pointing angle (positive down from velocity vector)
and yaw pointing angle for various crossrange distances of the ship location. Valucs
of antenna gain (negative) were obtained from the antenna pattern shown in Figure 3.5-15,
The severity of these losses cannot be evaluated by themselves but are dependent on the
additional factors such as plasma attenuation, space attenuation, etc. The levels
indicated show, however, the effect of crossrange on available transmission gain for
the centerline location of the slot antenna, Note that these curves can be used to
determine the radiation pattern requirements,
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3.6 RECOVERY FORCE STUDIES

3.6.1 INTRODUCTION

This section of the SLAMAST study report provides a discussion of some
of the general problems associated with recovery of an impacted vehicle, and contains
an analysis of a recovery force configured for the SLAMAST operation, Included is a
discussion of development of possible areas for normal recovery, generation of the
nominal impact recovery box, capabilities of some of the probable components to be
incorporated into the recovery force, suggested recovery force composition, and trade-
offs developed for various possible staging points of the recovery operation.

3.6,2 BASIC FLIGHT CONDITIONS

Recovery planning during this study was developed simultaneously with
development in other disciplines. As revised design trajectories were generated, the
results were factored into the recovery planning effort. The SLAMAST trajectories as
incorporated into this final planning effort were based on the following parameters:
(ref. 3.6-1)

v, = 20000 fps
W/C S = 200 psf
o, = 16.0°

0 o
7, = =17, -10

The subscript "o refers to conditions at 400, 000 feet during re-entry. In
addition, from launch at Wallops Station to the 400, 000-foot altitude on the descending
trajectory, the SLAMAST vehicle has travelled 620 nautical miles downrange during
420 seconds of flight (ref. 3.6-2). These design trajectories provide the boundary
conditions in sizing the recovery support requirements. Combining trajectory data for
both the pre-experiment and experiment-to-impact phases yields the following:

Yo TOTAL RANGE - NAUTICAL MILES | TOTAL TIME -SECONDS
(o)

-1 2730 1287

-10° 2100 1259

During this study all planning was based on a launch from Wallops Station,
with the conditions at 400, 000 feet being reached when the SLAMAST vehicle was off
the coast of Bermuda.

3.6.3 DEVELOPMENT OF NOMINAL RECOVERY BOX
Sizing of a nominal recovery box was accomplished during the planning study.

As developed the dimensions of the nominal recovery area (30) are £110 n. mi. crossrange
by +170 n.mi. up/downrange. The crossrange figure developed from considering
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a 0. 020 inch CG offset, which contributes +20 n. mi. to the crossrange error, plus a
4. 5° (3 0) roll bias, which contributes +90 n, mi. to the total crossrange error. Range
error was determined by considering variations in Cy, Cp, atmospheric density, and
re-entry path angle. (ref. 3. 6-4)

Range errors are compensated to some extent by the Ay, AX control system
which accounts for variations in some of the above parameters reducing the 30 range
error from *450 n. mi. to *170 n. mi.

3.6,4 CAPABILITIES OF RECOVERY FORCE COMPONENTS

Planning for a recovery force which has the mission to detect, identify, locate,
and retrieve a vehicle which has traversed through space required an analysis of the
capabilities of the individual components comprising the recovery force. Components
normally included in a typical recovery force include fixed-wing aircraft, surface ships,
and helicopters. During this study an investigation was conducted to determine the types
of equipment which could be expected to be operational and available during the period
of SLAMAST flight testing, One visit was made (ref, 3,6-5) to the Office of Instrumentation
Ships, NASA-GSFC, to investigate the status of the Apollo Instrumentation Ships (AIS)
Program, From this visit it was learned that the primary use of the AIS assigned to the
Atlantic Ocean area will be for tracking purposes. Little retrieval and recovery effort is
currently envisioned for this ship. As a result, planning proceeded on the assumption
that any ship assigned to the recovery force would be similar to the ARIS type, with a
speed capability of 15 knots. Aircraft planning was based on the assumption that the
JC-130B type would be utilized in the make-up of the recovery force. As such, all
planning was based on impact occurring within an area such that this type of aircraft would
have 2 minimum time available for search of one hour, including the effect of a one-hour
launch window. The JC-130B aircraft has a cruising speed of 270 knots and an operational
endurance of 10 hours. This aircraft, when assigned to recovery operations, carries
standard direction finding (DF) equipment on board, An updated version of the JC-130B
type aircraft, the JC-130H, is under procurement, but it is not known at this date
when this aircraft is scheduled to become available in the Atlantic recovery area. The
search range of the JC-130H is approximately 40 percent greater than that of the JC-130B
aircraft,

The use of land based helicopters in the recovery force for the SLAMAST
operation is not considered feasible due to the limited range of these vehicles. The
present capability of the CH-3B helicopter is 250 n, mi,, when operating from either a
ship or from land. It is anticipated that range from land for this vehicle will be increased
to 350 n. mi. by modifications to the aircraft. Even when so modified, however, the
proposed impact areas are not within the range of capability,

3.6.5 RECOVERY FORCE COMPOSITION

Based on the size of the nominal recovery box and the capabilities of the
components expected to be included, the typical recovery force for a SLAMAST operation
may be configured. It is recommended that one recovery ship be assigned to this force.
The purpose for this ship would be to make the actual retrieval of the SLAMAST vehicle

216




after the search aircraft have located it on the surface of the ocean. For purposes of
search it is recommended that a minimum of three JC-130 type aircraft be assigned to
the operation. It is recommended that pararescue’ teams are provided as an integral
part of the aircraft complement. When flying at 30, 000 feet altitude these aircraft have
a line-of-sight capability of approximately 200 n.mi. ; therefore, three aircraft would
provide complete coverage of the nominal recovery box.

3.6.6 PROPOSED RECOVERY AREA

Figure 3. 6-1 depicts a proposed recovery area for each of two typical tra-
jectories under consideration for SLAMAST flight testing, Both trajectories are based
on a launch from Wallops Station, with the 400, 000-foot re-entry point being reached
when the trajectory ground trace is approximately southeast of the island of Bermuda.
The Range Safety Limit Line constraint was arbitrarily placed at 100 n. mi. from any
inhabited areas. The capability of the JC-130 aircraft to maintain a one-hour (minimum)
"On-Station" search capability is also depicted. It is shown that for the case of the
19 DFH trajectory it would be necessary to stage from San Fernando Island, while for
the 10° DFH case staging should be made from Trinidad. It should be noted that Trinidad
is an active installation of the Air Force Eastern Test Range (AFETR) and all require-
ments for staging may be easily met; staging from San Fernando, however, would require
more extensive preparations in as much as this location, although a station of AFETR,
is on an inactive status, and would have to be reactivated.
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3.7 RANGE SAFETY STUDIES

3.7.1 INTRODUCTION

A preliminary study of the Range Safety Constraints for conducting
SLAMAST flight tests from Wallops Island to an impact area suitable for recovery
has been investigated. For the two design trajectories (Ve= 20,000 fps @ -1° < Ye
< -10°) a worst case malfunction footprint has been computed. This footprint assumes
failures at Re-entry (400,000 feet) and at 350 seconds after re-entry.

The simultaneous failures assumed for generating the footprint for both
cases produces the maximum range and cross dispersion possible based on the known
performance characteristics of the SLAMAST spacecraft.

3.7.2 DISCUSSION

3.7.2.1 Range safety definition. - The criteria to be used in determining the
extent of any range safety problem is shown in Figure 3.7~1. This figure present
typical flight trajectories for the -1° and -10° design trajectories constructed to
allow the maximum distance from inhabited land masses, while still providing a
reasonable capability of supporting a recovery operation.

A 100 nautical mile radius was constructed around each land mass as a
range safety provision and then each point was connected to derive the range safety
limit line.

At critical points along each design trajectory, the range and cross range
limitations were determined and is plotted as a range safety limit line in Figures 3.7-2,
3.7-3, 3.7-4 and 3. 7-5.

3.7.2.2 Range safety footprint. - In order to determine the worst case failures;
i.e. maximize spacecraft range and cross range, the following two sets of conditions
were assumed:

(1) Failure at re-entry
L

(a) Max D

(b) Pitch flap fixed at 13 degree for entire flight (& F)

(¢) Trim angle of attack is 9 degree for entire flight (@T).

(d) Bank angle (@) fixed at positions from 0 to 180 degrees.
for entire flight.

o~
N
~or

Same as preceding, except failure is assumed at 350 seconds from

Pore 3888 =
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The footprints resulting from each set of assumed conditions is shown in
Figures 3.7-2 through 3.7-5. With the exception of the failure at 350 seconds,
(Ve = 20,000 FB, y, = -10°) the cross range safety limits were exceeded. In
addition, for the bank angles of less than ~15 degrees, the extension in range will
produce a downrange safety condition in the vicinity of San Fernando Island. There-
fore, the cross range and downrange control problem is significant for failures at
re-entry, and somewhat relieved at failures occurring at 350 seconds, but in either
case a flight termination method/system must be used in order to satisfy the range
safety constraints.

3.7.3 FLIGHT TERMINATION CONSIDERATIONS

The design of a flight termination system for this study contract phase
was considered to be an unrealistic goal, based on the probable failure modes to be
investigated to incorporate all contingent malfunctions, and therefore a discussion of
possible flight termination methods is presented with the actual requirements remaining
for a future study.

Figures 3. 7-6 through 3. 7-9 presant the time dependent range and
cross-range dispersion based on failures at re-entry for both design trajectories.
We shall limit the discussion to Figures 3.7-6 and 3.7-7 as a representative case.

In Figure 3.7-6 at the normal retardation time of 700 seconds, the
deviation from the nominal range of 1360 n, mi. can be +480 miles - or - -780 n. mi.
for MAX Lﬁand bank angles of » = 0 and ¢ = + 60 degrees respectively. In addition

to the range safety problem this creates, there will be no possibility of recovering
the spacecraft. Therefore, a time/range requirement must be imposed on the
spacecraft control system to constrain the dispersion to at least the nominal recovery
footprint which is + 170 n. mi. in range and £110 n. mi. in cross range, at the
nominal time for retardation or 700 seconds, with the flight terminating at any time
beyond this time.

This means that an on-board system/systems will be required to deter-
mine downrange and crossrange from nominal in order to anticipate flight termination
conditions. The on-board system is recommended because the present planning for
ship placement only utilizes one tracking ship at each extreme end of the constant
altitude trajectory with the decision time for flight termination at a minimum. In
addition command destruct requires omnidirectional antenna capability.

The use of spinup as a flight termination method requires that the space-
craft maintain roll reference, and have the required gas system capability to provide
the spinup conditions. The mechanics and details in determining the optimum spin-
up conditions, the gas system adequacy, and provisions for a possible redundant roll

reference system is beyond the scope of this report, and should be studied in detail
at a later date.
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